Ido Keren
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ido Keren.
Plant Journal | 2012
Ido Keren; Liat Tal; Catherine Colas des Francs-Small; Wagner L. Araújo; Sofia Shevtsov; Felix Shaya; Alisdair R. Fernie; Ian Small; Oren Ostersetzer-Biran
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.
Mitochondrion | 2014
Felix Grewe; Patrick P. Edger; Ido Keren; Laure D. Sultan; J. Chris Pires; Oren Ostersetzer-Biran; Jeffrey P. Mower
To elucidate the evolution of mitochondrial genomic diversity within a single order of angiosperms, we sequenced seven Brassicales genomes and the transcriptome of Brassica oleracea. In the common ancestor of Brassicaceae, several genes of known function were lost and the ccmFN gene was split into two independent genes, which also coincides with a trend of genome reduction towards the smallest sequenced angiosperm genomes of Brassica. For most ORFs of unknown function, the lack of conservation throughout Brassicales and the generally low expression and absence of RNA editing in B. oleracea argue against functionality. However, two chimeric ORFs were expressed and edited in B. oleracea, suggesting a potential role in cytoplasmic male sterility in certain nuclear backgrounds. These results demonstrate how frequent shifts in size, structure, and content of plant mitochondrial genomes can occur over short evolutionary time scales.
Journal of Biological Chemistry | 2008
Ido Keren; Liron Klipcan; Ayenachew Bezawork-Geleta; Max Kolton; Felix Shaya; Oren Ostersetzer-Biran
CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted “catalytically active” form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.
The Plant Cell | 2016
Laure D. Sultan; Daria Mileshina; Felix Grewe; Katarzyna Rolle; Sivan Abudraham; Paweł Głodowicz; Adnan Khan Niazi; Ido Keren; Sofia Shevtsov; Liron Klipcan; Jan Barciszewski; Jeffrey P. Mower; André Dietrich; Oren Ostersetzer-Biran
MatR, a highly conserved, essential mitochondrial protein, functions in the processing and maturation of various pre-RNAs in plant mitochondria, as revealed by in vivo analyses. Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory.
Molecular Plant | 2016
Kamaldeep S. Virdi; Yashitola Wamboldt; Hardik Kundariya; John D. Laurie; Ido Keren; K. R. Sunil Kumar; Anna Block; Gilles J. Basset; Steve Luebker; Christian Elowsky; Philip M M. Day; Johnna L. Roose; Terry M. Bricker; Thomas E. Elthon; Sally A. Mackenzie
As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.
Journal of Integrative Plant Biology | 2012
Felix Shaya; Svetlana Gaiduk; Ido Keren; Sofia Shevtsov; Hanita Zemah; Eduard Belausov; Dalia Evenor; Moshe Reuveni; Oren Ostersetzer-Biran
Plant mitochondrial genomes (mtDNAs) are large and undergo frequent recombination events. A common phenotype that emerges as a consequence of altered mtDNA structure is cytoplasmic-male sterility (CMS). The molecular basis for CMS remains unclear, but it seems logical that altered respiration activities would result in reduced pollen production. Analysis of tobacco (Nicotiana tabacum) mtDNAs indicated that CMS-associated loci often contain fragments of known organellar genes. These may assemble with organellar complexes and thereby interfere with normal respiratory functions. Here, we analyzed whether the expression of truncated fragments of mitochondrial genes (i.e. atp4, cox1 and rps3) may induce male sterility by limiting the biogenesis of the respiratory machinery. cDNA fragments corresponding to atp4f, cox1f and rps3f were cloned in-frame to a mitochondrial localization signal and a C-termini HA-tag under a tapetum-specific promoter and introduced to tobacco plants by Agrobacterium-mediated transformation. The constructs were then analyzed for their effect on mitochondrial activity and pollen fertility. Atp4f, Cox1f and Rps3f plants demonstrated male sterility phenotypes, which were tightly correlated with the expression of the recombinant fragments in the floral meristem. Fractionation of native organellar extracts showed that the recombinant ATP4f-HA, COX1f-HA and RPS3f-HA proteins are found in large membrane-associated particles. Analysis of the respiratory activities and protein profiles indicated that organellar complex I was altered in Atp4f, Cox1f and Rps3f plants.
International Journal of Molecular Sciences | 2017
Michal Zmudjak; Sofia Shevtsov; Laure D. Sultan; Ido Keren; Oren Ostersetzer-Biran
Plant mitochondria are remarkable with respect to the presence of numerous group II introns which reside in many essential genes. The removal of the organellar introns from the coding genes they interrupt is essential for respiratory functions, and is facilitated by different enzymes that belong to a diverse set of protein families. These include maturases and RNA helicases related proteins that function in group II intron splicing in different organisms. Previous studies indicate a role for the nMAT2 maturase and the RNA helicase PMH2 in the maturation of different pre-RNAs in Arabidopsis mitochondria. However, the specific roles of these proteins in the splicing activity still need to be resolved. Using transcriptome analyses of Arabidopsis mitochondria, we show that nMAT2 and PMH2 function in the splicing of similar subsets of group II introns. Fractionation of native organellar extracts and pulldown experiments indicate that nMAT2 and PMH2 are associated together with their intron-RNA targets in large ribonucleoprotein particle in vivo. Moreover, the splicing efficiencies of the joint intron targets of nMAT2 and PMH2 are more strongly affected in a double nmat2/pmh2 mutant-line. These results are significant as they may imply that these proteins serve as components of a proto-spliceosomal complex in plant mitochondria.
RNA | 2009
Ido Keren; Ayenachew Bezawork-Geleta; Max Kolton; Inbar Maayan; Eduard Belausov; Maggie Levy; Anahit Mett; David Gidoni; Felix Shaya; Oren Ostersetzer-Biran
New Phytologist | 2013
Michal Zmudjak; Catherine Colas des Francs-Small; Ido Keren; Felix Shaya; Eduard Belausov; Ian Small; Oren Ostersetzer-Biran
Plant Journal | 2014
Sigal Cohen; Michal Zmudjak; Catherine Colas des Francs-Small; Sunita Malik; Felix Shaya; Ido Keren; Eduard Belausov; Yair Many; Gregory G. Brown; Ian Small; Oren Ostersetzer-Biran