Idoia Garcia
Ikerbasque
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Idoia Garcia.
Expert Opinion on Therapeutic Targets | 2016
Laura Garros-Regulez; Paula Aldaz; Olatz Arrizabalaga; Veronica Moncho-Amor; Estefania Carrasco-Garcia; Lorea Manterola; Leire Moreno-Cugnon; Cristina Barrena; Jorge Villanua; Irune Ruiz; Steven M. Pollard; Robin Lovell-Badge; Nicolás Samprón; Idoia Garcia; Ander Matheu
ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9.
Frontiers in Oncology | 2016
Laura Garros-Regulez; Idoia Garcia; Estefania Carrasco-Garcia; Aquilino Lantero; Paula Aldaz; Leire Moreno-Cugnon; Olatz Arrizabalaga; José Undabeitia; Sergio Torres-Bayona; Jorge Villanua; Irune Ruiz; Larraitz Egaña; Nicolás Samprón; Ander Matheu
Glioblastoma is the most common and malignant brain cancer in adults. Current therapy consisting of surgery followed by radiation and temozolomide has a moderate success rate and the tumor reappears. Among the features that a cancer cell must have to survive the therapeutic treatment and reconstitute the tumor is the ability of self-renewal. Therefore, it is vital to identify the molecular mechanisms that regulate this activity. Sex-determining region Y (SRY)-box 2 (SOX2) is a transcription factor whose activity has been associated with the maintenance of the undifferentiated state of cancer stem cells in several tissues, including the brain. Several groups have detected increased SOX2 levels in biopsies of glioblastoma patients, with the highest levels associated with poor outcome. Therefore, SOX2 silencing might be a novel therapeutic approach to combat cancer and particularly brain tumors. In this review, we will summarize the current knowledge about SOX2 in glioblastoma and recapitulate several strategies that have recently been described targeting SOX2 in this malignancy.
Scientific Reports | 2016
Estefania Carrasco-Garcia; Lidia Lopez; Paula Aldaz; Sara Arevalo; Juncal Aldaregia; Larraitz Egaña; Luis Bujanda; Martin Cheung; Nicolás Samprón; Idoia Garcia; Ander Matheu
The cancer stem cell (CSC) hypothesis proposes a hierarchical organization of tumors, in which stem-like cells sustain tumors and drive metastasis. The molecular mechanisms underlying the acquisition of CSCs and metastatic traits are not well understood. SOX9 is a transcription factor linked to stem cell maintenance and commonly overexpressed in solid cancers including colorectal cancer. In this study, we show that SOX9 levels are higher in metastatic (SW620) than in primary colorectal cancer cells (SW480) derived from the same patient. This elevated expression correlated with enhanced self-renewal activity. By gain and loss-of-function studies in SW480 and SW620 cells respectively, we reveal that SOX9 levels modulate tumorsphere formation and self-renewal ability in vitro and tumor initiation in vivo. Moreover, SOX9 regulates migration and invasion and triggers the transition between epithelial and mesenchymal states. These activities are partially dependent on SOX9 post-transcriptional modifications. Importantly, treatment with rapamycin inhibits self-renewal and tumor growth in a SOX9-dependent manner. These results identify a functional role for SOX9 in regulating colorectal cancer cell plasticity and metastasis, and provide a strong rationale for a rapamycin-based therapeutic strategy.
Aging (Albany NY) | 2016
Consuelo Borras; Kheira M. Abdelaziz; Juan Gambini; Eva Serna; Marta Inglés; Mónica De la Fuente; Idoia Garcia; Ander Matheu; Paula Sanchís; Angel Belenguer; Alessandra Errigo; Juan A. Avellana; Ana Barettino; Carla Lloret-Fernandez; Nuria Flames; Gianni Pes; Leocadio Rodríguez-Mañas; Jose Viña
Centenarians not only enjoy an extraordinary aging, but also show a compression of morbidity. Using functional transcriptomic analysis of peripheral blood mononuclear cells (PMBC) we identified 1721 mRNAs differentially expressed by centenarians when compared with septuagenarians and young people. Sub-network analysis led us to identify Bcl - xL as an important gene up-regulated in centenarians. It is involved in the control of apoptosis, cellular damage protection and also in modulation of immune response, all associated to healthy aging. Indeed, centenarians display lower plasma cytochrome C levels, higher mitochondrial membrane potential and also less cellular damage accumulation than septuagenarians. Leukocyte chemotaxis and NK cell activity are significantly impaired in septuagenarians compared with young people whereas centenarians maintain them. To further ascertain the functional role of Bcl- xL in cellular aging, we found that lymphocytes from septuagenarians transduced with Bcl-xL display a reduction in senescent-related markers. Finally, to demonstrate the role of BcL-xL in longevity at the organism level, C. elegans bearing a gain of function mutation in the BcL-xL ortholog ced-9, showed a significant increase in mean and maximal life span. These results show that mRNA expression in centenarians is unique and reveals that BcL- xL plays an important role in exceptional aging.
Scientific Reports | 2017
Sandra Colié; Sara Sarroca; Rocío Palenzuela; Idoia Garcia; Ander Matheu; Rubén Corpas; Carlos G. Dotti; José A. Esteban; Coral Sanfeliu; Angel R. Nebreda
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a severe and progressive neuronal loss leading to cognitive dysfunctions. Previous reports, based on the use of chemical inhibitors, have connected the stress kinase p38α to neuroinflammation, neuronal death and synaptic dysfunction. To explore the specific role of neuronal p38α signalling in the appearance of pathological symptoms, we have generated mice that combine expression of the 5XFAD transgenes to induce AD symptoms with the downregulation of p38α only in neurons (5XFAD/p38α∆-N). We found that the neuronal-specific deletion of p38α improves the memory loss and long-term potentiation impairment induced by 5XFAD transgenes. Furthermore, 5XFAD/p38α∆-N mice display reduced amyloid-β accumulation, improved neurogenesis, and important changes in brain cytokine expression compared with 5XFAD mice. Our results implicate neuronal p38α signalling in the synaptic plasticity dysfunction and memory impairment observed in 5XFAD mice, by regulating both amyloid-β deposition in the brain and the relay of this accumulation to mount an inflammatory response, which leads to the cognitive deficits.
Scientific Reports | 2017
Idoia Garcia; Juncal Aldaregia; Jelena Marjanovic Vicentic; Paula Aldaz; Leire Moreno-Cugnon; Sergio Torres-Bayona; Estefania Carrasco-Garcia; Laura Garros-Regulez; Larraitz Egaña; Angel Rubio; Steven M. Pollard; Milena Stevanovic; Nicolás Samprón; Ander Matheu
Glioblastoma remains the most common and deadliest type of brain tumor and contains a population of self-renewing, highly tumorigenic glioma stem cells (GSCs), which contributes to tumor initiation and treatment resistance. Developmental programs participating in tissue development and homeostasis re-emerge in GSCs, supporting the development and progression of glioblastoma. SOX1 plays an important role in neural development and neural progenitor pool maintenance. Its impact on glioblastoma remains largely unknown. In this study, we have found that high levels of SOX1 observed in a subset of patients correlate with lower overall survival. At the cellular level, SOX1 expression is elevated in patient-derived GSCs and it is also higher in oncosphere culture compared to differentiation conditions in conventional glioblastoma cell lines. Moreover, genetic inhibition of SOX1 in patient-derived GSCs and conventional cell lines decreases self-renewal and proliferative capacity in vitro and tumor initiation and growth in vivo. Contrarily, SOX1 over-expression moderately promotes self-renewal and proliferation in GSCs. These functions seem to be independent of its activity as Wnt/β-catenin signaling regulator. In summary, these results identify a functional role for SOX1 in regulating glioma cell heterogeneity and plasticity, and suggest SOX1 as a potential target in the GSC population in glioblastoma.
Mechanisms of Ageing and Development | 2018
Estefania Carrasco-Garcia; Leire Moreno-Cugnon; Idoia Garcia; Consuelo Borras; Miren Revuelta; Ander Izeta; Guillermo López-Lluch; Marian M. de Pancorbo; Itziar Vergara; Jose Viña; Ander Matheu
SOX2 (Sex-determining region Y box 2) is a transcription factor expressed in several foetal and adult tissues and its deregulated activity has been linked to chronic diseases associated with ageing. Nevertheless, the level of SOX2 expression in aged individuals at the tissue level has not previously been examined. In this work, we show that SOX2 expression decreases significantly in the brain with ageing, in both humans and rodents. The administration of resveratrol for 6 months in mice partly attenuated this reduction. We also identified an age-related decline in SOX2 mRNA and protein expression in several other organs, namely, the lung, heart, kidney, spleen and liver. Moreover, peripheral blood mononuclear cells (PBMCs) from elderly expressed lower levels of SOX2 than those from young individuals. Mechanistically, SOX2 expression inversely correlates with p16Ink4a levels. Together, these data show a widespread decrease in SOX2 with age, suggesting that the decline in SOX2 expression might be used as a biomarker of ageing.
Oncogenesis | 2017
Olatz Arrizabalaga; Leire Moreno-Cugnon; Jaione Auzmendi-Iriarte; Paula Aldaz; Inmaculada Ibanez de Caceres; Laura Garros-Regulez; Veronica Moncho-Amor; Sergio Torres-Bayona; Olga Pernía; Laura Pintado-Berninches; Patricia Carrasco-Ramírez; María Cortés-Sempere; Rocio Rosas; Pilar Sánchez-Gómez; Irune Ruiz; Helena Carén; Steven M. Pollard; Idoia Garcia; Angel-Ayuso Sacido; Robin Lovell-Badge; C. Belda-Iniesta; Nicolás Samprón; Rosario Perona; Ander Matheu
The elucidation of mechanisms involved in resistance to therapies is essential to improve the survival of patients with malignant gliomas. A major feature possessed by glioma cells that may aid their ability to survive therapy and reconstitute tumors is the capacity for self-renewal. We show here that glioma stem cells (GSCs) express low levels of MKP1, a dual-specificity phosphatase, which acts as a negative inhibitor of JNK, ERK1/2, and p38 MAPK, while induction of high levels of MKP1 expression are associated with differentiation of GSC. Notably, we find that high levels of MKP1 correlate with a subset of glioblastoma patients with better prognosis and overall increased survival. Gain of expression studies demonstrated that elevated MKP1 impairs self-renewal and induces differentiation of GSCs while reducing tumorigenesis in vivo. Moreover, we identified that MKP1 is epigenetically regulated and that it mediates the anti-tumor activity of histone deacetylase inhibitors (HDACIs) alone or in combination with temozolomide. In summary, this study identifies MKP1 as a key modulator of the interplay between GSC self-renewal and differentiation and provides evidence that the activation of MKP1, through epigenetic regulation, might be a novel therapeutic strategy to overcome therapy resistance in glioblastoma.
Scientific Reports | 2018
Sergio Torres-Bayona; Paula Aldaz; Jaione Auzmendi-Iriarte; Ander Saenz-Antoñanzas; Idoia Garcia; Mariano Arrazola; Daniela Gerovska; José Undabeitia; Arrate Querejeta; Larraitz Egaña; Jorge Villanua; Irune Ruiz; Cristina Sarasqueta; E. Úrculo; Marcos J. Araúzo-Bravo; Maite Huarte; Nicolás Samprón; Ander Matheu
Long non-coding RNAs (LncRNAs) have emerged as a relevant class of genome regulators involved in a broad range of biological processes and with important roles in tumor initiation and malignant progression. We have previously identified a p53-regulated tumor suppressor signature of LncRNAs (PR-LncRNAs) in colorectal cancer. Our aim was to identify the expression and function of this signature in gliomas. We found that the expression of the four PR-LncRNAs tested was high in human low-grade glioma samples and diminished with increasing grade of disease, being the lowest in glioblastoma samples. Functional assays demonstrated that PR-LncRNA silencing increased glioma cell proliferation and oncosphere formation. Mechanistically, we found an inverse correlation between PR-LncRNA expression and SOX1, SOX2 and SOX9 stem cell factors in human glioma biopsies and in glioma cells in vitro. Moreover, knock-down of SOX activity abolished the effect of PR-LncRNA silencing in glioma cell activity. In conclusion, our results demonstrate that the expression and function of PR-LncRNAs are significantly altered in gliomagenesis and that their activity is mediated by SOX factors. These results may provide important insights into the mechanisms responsible for glioblastoma pathogenesis.
International Journal of Molecular Sciences | 2018
Juncal Aldaregia; Ainitze Odriozola; Ander Matheu; Idoia Garcia
Mechanistic target of rapamycin (mTOR) is a master signaling pathway that regulates organismal growth and homeostasis, because of its implication in protein and lipid synthesis, and in the control of the cell cycle and the cellular metabolism. Moreover, it is necessary in cerebellar development and stem cell pluripotency maintenance. Its deregulation has been implicated in the medulloblastoma and in medulloblastoma stem cells (MBSCs). Medulloblastoma is the most common malignant solid tumor in childhood. The current therapies have improved the overall survival but they carry serious side effects, such as permanent neurological sequelae and disability. Recent studies have given rise to a new molecular classification of the subgroups of medulloblastoma, specifying 12 different subtypes containing novel potential therapeutic targets. In this review we propose the targeting of mTOR, in combination with current therapies, as a promising novel therapeutic approach.