Idoia Quintana-Urzainqui
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Idoia Quintana-Urzainqui.
Brain Behavior and Evolution | 2012
Idoia Quintana-Urzainqui; Catalina Sueiro; Iván Carrera; Susana Ferreiro-Galve; Gabriel N. Santos-Durán; Sol Pose-Méndez; Sylvie Mazan; Eva Candal; Isabel Rodríguez-Moldes
The basic anatomy of the elasmobranch brain has been previously established after studying the organization of the different subdivisions in the adult brain. However, despite the relatively abundant immunohistochemical and hodologic studies performed in different species of sharks and skates, the organization of some brain subdivisions remains unclear. The present study focuses on some brain regions in which subdivisions established on the basis of anatomical data in adults remain controversial, such as the subpallium, mainly the striatal subdivision. Taking advantage of the great potential of the lesser spotted dogfish, Scyliorhinus canicula, as a model for developmental studies, we have characterized the subpallium throughout development and postembryonic stages by analyzing the distribution of immunomarkers for GABA, catecholamines, and neuropeptides, such as substance P. Moreover, we have analyzed the expression pattern of regulatory genes involved in the regionalization of the telencephalon, such as Dlx2, Nkx2.1, and Shh, and followed their derivatives throughout development in relation to the distribution of such neurochemical markers. For further characterization, we have also analyzed the patterns of innervation of the subpallium after applying tract-tracing techniques. Our observations may shed light on postulate equivalences of regions and nuclei among elasmobranchs and support homologies with other vertebrates.
Frontiers in Neuroanatomy | 2011
Isabel Rodríguez-Moldes; Iván Carrera; Sol Pose-Méndez; Idoia Quintana-Urzainqui; Eva Candal; Ramón Anadón; Sylvie Mazan; Susana Ferreiro-Galve
Cartilaginous fishes (chondrichthyans) represent an ancient radiation of vertebrates currently considered the sister group of the group of gnathostomes with a bony skeleton that gave rise to land vertebrates. This out-group position makes chondrichthyans essential in assessing the ancestral organization of the brain of jawed vertebrates. To gain knowledge about hindbrain evolution we have studied its development in a shark, the lesser spotted dogfish Scyliorhinus canicula by analyzing the expression of some developmental genes and the origin and distribution of specific neuronal populations, which may help to identify hindbrain subdivisions and boundaries and the topology of specific cell groups. We have characterized three developmental periods that will serve as a framework to compare the development of different neuronal systems and may represent a suitable tool for comparing the absolute chronology of development among vertebrates. The expression patterns of Pax6, Wnt8, and HoxA2 genes in early embryos of S. canicula showed close correspondence to what has been described in other vertebrates and helped to identify the anterior rhombomeres. Also in these early embryos, the combination of Pax6 with protein markers of migrating neuroblasts (DCX) and early differentiating neurons (general: HuC/D; neuron type specific: GAD, the GABA synthesizing enzyme) revealed the organization of S. canicula hindbrain in both transverse segmental units corresponding to visible rhombomeres and longitudinal columns. Later in development, when the interrhombomeric boundaries fade away, accurate information about S. canicula hindbrain subdivisions was achieved by comparing the expression patterns of Pax6 and GAD, serotonin (serotoninergic neurons), tyrosine hydroxylase (catecholaminergic neurons), choline acetyltransferase (cholinergic neurons), and calretinin (a calcium-binding protein). The patterns observed revealed many topological correspondences with other vertebrates and led to reconsideration of the current view of the elasmobranch hindbrain segmentation as peculiar among vertebrates.
Cell Reports | 2014
Isabel Martín Caballero; Martine Manuel; Michael Molinek; Idoia Quintana-Urzainqui; Da Mi; Tomomi Shimogori; David J. Price
Summary During development, region-specific patterns of regulatory gene expression are controlled by signaling centers that release morphogens providing positional information to surrounding cells. Regulation of signaling centers themselves is therefore critical. The size and the influence of a Shh-producing forebrain organizer, the zona limitans intrathalamica (ZLI), are limited by Pax6. By studying mouse chimeras, we find that Pax6 acts cell autonomously to block Shh expression in cells around the ZLI. Immunoprecipitation and luciferase assays indicate that Pax6 can bind the Shh promoter and repress its function. An analysis of chimeras suggests that many of the regional gene expression pattern defects that occur in Pax6−/− diencephalic cells result from a non-cell-autonomous position-dependent defect of local intercellular signaling. Blocking Shh signaling in Pax6−/− mutants reverses major diencephalic patterning defects. We conclude that Pax6’s cell-autonomous repression of Shh expression around the ZLI is critical for many aspects of normal diencephalic patterning.
Brain Structure & Function | 2014
Idoia Quintana-Urzainqui; Isabel Rodríguez-Moldes; Eva Candal
The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.
Brain Structure & Function | 2015
Idoia Quintana-Urzainqui; Isabel Rodríguez-Moldes; Sylvie Mazan; Eva Candal
Tangential neuronal migration occurs along different axes from the axis demarcated by radial glia and it is thought to have evolved as a mechanism to increase the diversity of cell types in brain areas, which in turn resulted in increased complexity of functional networks. In the telencephalon of amniotes, different embryonic tangential pathways have been characterized. However, little is known about the exact routes of migrations in basal vertebrates. Cartilaginous fishes occupy a key phylogenetic position to assess the ancestral condition of vertebrate brain organization. In order to identify putative subpallial-derived tangential migratory pathways in the telencephalon of sharks, we performed a detailed analysis of the distribution pattern of GAD and Dlx2, two reliable markers of tangentially migrating interneurons of subpallial origin in the developing forebrain. We propose the existence of five tangential routes directed toward different telencephalic regions. We conclude that four of the five routes might have emerged in the common ancestor of jawed vertebrates. We have paid special attention to the characterization of the proposed migratory pathway directed towards the olfactory bulbs. Our results suggest that it may be equivalent to the “rostral migratory stream” of mammals and led us to propose a hypothesis about its evolution. The analysis of the final destinations of two other streams allowed us to identify the putative dorsal and medial pallium of sharks, the regions from which the neocortex and hippocampus might have, respectively, evolved. Derived features were also reported and served to explain some distinctive traits in the morphology of the telencephalon of cartilaginous fishes.
Frontiers in Neuroanatomy | 2016
Gabriel N. Santos-Durán; Susana Ferreiro-Galve; Arnaud Menuet; Idoia Quintana-Urzainqui; Sylvie Mazan; Isabel Rodríguez-Moldes; Eva Candal
The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecortin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlaps over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6, and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa.
bioRxiv | 2018
Idoia Quintana-Urzainqui; Zrinko Kozić; Soham Mitra; Tian Tian; Martine Manuel; John O. Mason; David J. Price
Differences in the growth and maturation of diverse forebrain tissues depends on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in murine diencephalon versus cortex. We tested several possible mechanisms to explain Pax6’s tissue-specific actions and found that the presence of the transcription factor Foxg1 in cortex but not diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between diencephalon and cortex. In cortex lacking Foxg1, Pax6’s action on the balance of proliferation versus differentiation became diencephalon-like. Our findings reveal a mechanism for generating regional forebrain diversity in which the actions of one transcription factor completely reverse the actions of another.
Brain Structure & Function | 2018
A. Docampo-Seara; R. Lagadec; Sylvie Mazan; M. A. Rodríguez; Idoia Quintana-Urzainqui; Eva Candal
The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotes.
Brain Behavior and Evolution | 2014
Ramón Anadón; Idoia Quintana-Urzainqui; Eva Candal; Isabel Rodríguez-Moldes; Travis Monk; Michael G. Paulin; Horst O. Schwassmann; M. Ivaneide S. Assunção; Frank Kirschbaum; Paul S. Katz; Fanny de Busserolles; N. Justin Marshall; Shaun P. Collin; Juli Wade; Halie N. Kerver; Satz Mengensatzproduktion; Werner Druck Medien Ag
66 The 34th Annual Meeting of the J.B. Johnston Club for Evolutionary Neuroscience and the 26th Annual Karger Workshop in Evolutionary Neuroscience Washington, D.C., November 13–14, 2014
International Journal of Developmental Neuroscience | 2010
Iván Carrera; Ramón Anadón; Idoia Quintana-Urzainqui; Sol Pose-Méndez; Isabel Rodríguez-Moldes
cursors, from a renewable source of stem cells – embryonic stem (ES) cells. First, we will mimic, in culture, the inner ear microenvironment supportive of HC generation, taking advantage of the recent breakthroughs on the knowledge of the molecular mechanisms regulating embryonic HC development. In order to achieve this goal, we are engineering mouse ES cells to bear various fluorescent reporters under control of genes known to be expressed at specific phases of HC development, such as, for example, Sox2, Pax2, Atoh1 or Myo7A. These multi-reporter ES cell lines will allow us not only to monitor with great precision the various steps involved in HC commitment and differentiation, but also to quickly screen for the best culture conditions that result in efficient generation of sensory HCs suitable for transplantation. In a second step of this work we will proceed to transplantation studies in animal models of human deafness. We hope that this work will result in crucial data, needed to achieve the final goal of restoring auditory function by replacing damaged or lost sensory HCs.