Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ifedayo Adetifa is active.

Publication


Featured researches published by Ifedayo Adetifa.


The Journal of Infectious Diseases | 2008

Progression to Active Tuberculosis, but Not Transmission, Varies by Mycobacterium tuberculosis Lineage in The Gambia

Bouke C. de Jong; Philip C. Hill; Alexander M. Aiken; Timothy Awine; Martin Antonio; Ifedayo Adetifa; Dolly Jackson-Sillah; Annette Fox; Kathryn DeRiemer; Sebastien Gagneux; Martien W. Borgdorff; Keith P. W. J. McAdam; Tumani Corrah; Peter M. Small; Richard A. Adegbola

BACKGROUND There is considerable variability in the outcome of Mycobacterium tuberculosis infection. We hypothesized that Mycobacterium africanum was less likely than M. tuberculosis to transmit and progress to tuberculosis disease. METHODS In a cohort study of patients with tuberculosis and their household contacts in The Gambia, we categorized 1808 HIV-negative tuberculosis contacts according to exposure to M. tuberculosis or M. africanum. Positive skin test results indicated transmission, and development of tuberculosis during 2 years of follow-up indicated progression to disease. RESULTS Transmission rates were similar, but rates of progression to disease were significantly lower in contacts exposed to M. africanum than in those exposed to M. tuberculosis (1.0% vs. 2.9%; hazard ratio [HR], 3.1 [95% confidence interval {CI}, 1.1-8.7]). Within M. tuberculosis sensu stricto, contacts exposed to a Beijing family strain were most likely to progress to disease (5.6%; HR relative to M. africanum, 6.7 [95% CI, 2.0-22]). CONCLUSIONS M. africanum and M. tuberculosis transmit equally well to household contacts, but contacts exposed to M. africanum are less likely to progress to tuberculosis disease than those exposed to M. tuberculosis. The variable rate of progression by lineage suggests that tuberculosis variability matters in clinical settings and should be accounted for in studies evaluating tuberculosis vaccines and treatment regimens for latent tuberculosis infection.


European Journal of Immunology | 2009

Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease.

Jayne S. Sutherland; Ifedayo Adetifa; Philip C. Hill; Richard A. Adegbola; Martin O. C. Ota

Tuberculosis (TB) remains a global health problem. The solution involves development of an effective vaccine, but has been limited by incomplete understanding of what constitutes protective immunity during natural infection with Mycobacterium tuberculosis. In this study, M. tuberculosis‐specific responses following an overnight whole‐blood assay were assessed by intracellular cytokine staining and luminex, and compared between TB cases and exposed household contacts. TB cases had significantly higher levels of IFN‐γ+TNF‐α+IL‐2+CD4+T cells compared with contacts. TB cases also had a significantly higher proportion of cells single‐positive for TNF‐α, but lower proportion of cells producing IL‐2 alone and these differences were seen for both CD4+and CD8+ T cells. Cytokine profiles from culture supernatants were significantly biased toward a Th1 phenotype (IFN‐γ and IL‐12(p40)) together with a complete abrogation of IL‐17 secretion in TB cases. Our data indicate that despite a robust response to TB antigens in active TB disease, changes in the pattern of cytokine production between TB infection and disease clearly contribute to disease progression.


Lancet Infectious Diseases | 2013

Drug-resistant tuberculosis: time for visionary political leadership

Ibrahim Abubakar; Matteo Zignol; Dennis Falzon; Mario Raviglione; Lucica Ditiu; Susan Masham; Ifedayo Adetifa; Nathan Ford; Helen Cox; Stephen D. Lawn; Ben J. Marais; Timothy D. McHugh; Peter Mwaba; Matthew Bates; Marc Lipman; Lynn S. Zijenah; Simon Logan; Ruth McNerney; A. Zumla; Krishna Sarda; Payam Nahid; Michael Hoelscher; Michel Pletschette; Ziad A. Memish; Peter Kim; Richard Hafner; Stewart T. Cole; Giovanni Battista Migliori; Markus Maeurer; Marco Schito

Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates roughly 630 000 cases of MDR tuberculosis worldwide, with great variation in the frequency of MDR tuberculosis between countries. In the past 8 years, extensively drug-resistant (XDR) tuberculosis has emerged, and has been reported in 84 countries, heralding the possibility of virtually untreatable tuberculosis. Increased population movement, the continuing HIV pandemic, and the rise in MDR tuberculosis pose formidable challenges to the global control of tuberculosis. We provide an overview of the global burden of drug-resistant disease; discuss the social, health service, management, and control issues that fuel and sustain the epidemic; and suggest specific recommendations for important next steps. Visionary political leadership is needed to curb the rise of MDR and XDR tuberculosis worldwide, through sustained funding and the implementation of global and regional action plans.


BMJ | 2014

Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis

Anjana Roy; Michael Eisenhut; Ross Harris; Laura C. Rodrigues; Saranya Sridhar; S Habermann; L Snell; Punam Mangtani; Ifedayo Adetifa; Ajit Lalvani; Ibrahim Abubakar

Objectives To determine whether BCG vaccination protects against Mycobacterium tuberculosis infection as assessed by interferon γ release assays (IGRA) in children. Design Systematic review and meta-analysis. Searches of electronic databases 1950 to November 2013, checking of reference lists, hand searching of journals, and contact with experts. Setting Community congregate settings and households. Inclusion criteria Vaccinated and unvaccinated children aged under 16 with known recent exposure to patients with pulmonary tuberculosis. Children were screened for infection with M tuberculosis with interferon γ release assays. Data extraction Study results relating to diagnostic accuracy were extracted and risk estimates were combined with random effects meta-analysis. Results The primary analysis included 14 studies and 3855 participants. The estimated overall risk ratio was 0.81 (95% confidence interval 0.71 to 0.92), indicating a protective efficacy of 19% against infection among vaccinated children after exposure compared with unvaccinated children. The observed protection was similar when estimated with the two types of interferon γ release assays (ELISpot or QuantiFERON). Restriction of the analysis to the six studies (n=1745) with information on progression to active tuberculosis at the time of screening showed protection against infection of 27% (risk ratio 0.73, 0.61 to 0.87) compared with 71% (0.29, 0.15 to 0.58) against active tuberculosis. Among those infected, protection against progression to disease was 58% (0.42, 0.23 to 0.77). Conclusions BCG protects against M tuberculosis infection as well as progression from infection to disease. Trial registration PROSPERO registration No CRD42011001698 (www.crd.york.ac.uk/prospero/).


PLOS Medicine | 2007

Longitudinal Assessment of an ELISPOT Test for Mycobacterium tuberculosis Infection

Philip C. Hill; Roger H. Brookes; Annette Fox; Dolly Jackson-Sillah; David Jeffries; Moses D. Lugos; Simon Donkor; Ifedayo Adetifa; Bouke C. de Jong; Alexander M. Aiken; Richard A. Adegbola; Keith P. W. J. McAdam

Background Very little longitudinal information is available regarding the performance of T cell-based tests for Mycobacterium tuberculosis infection. To address this deficiency, we conducted a longitudinal assessment of the enzyme-linked immunosorbent spot test (ELISPOT) test in comparison to the standard tuberculin skin test (TST). Methods and Findings In tuberculosis (TB) contacts we repeated ELISPOT tests 3 mo (n = 341) and 18 mo (n = 210) after recruitment and TSTs at 18 mo (n = 130). We evaluated factors for association with conversion and reversion and investigated suspected cases of TB. Of 207 ELISPOT-negative contacts, 51 (24.6%) had 3-mo ELISPOT conversion, which was associated with a positive recruitment TST (odds ratio [OR] 2.2, 95% confidence interval [CI] 1.0–5.0, p = 0.048) and negatively associated with bacillus Calmette-Guérin (BCG) vaccination (OR 0.5, 95% CI 0.2–1.0, p = 0.06). Of 134 contacts, 54 (40.2%) underwent 3-mo ELISPOT reversion, which was less likely in those with a positive recruitment TST (OR 0.3, 95% CI 0.1–0.8, p = 0.014). Between 3 and 18 mo, 35/132 (26.5%) contacts underwent ELISPOT conversion and 28/78 (35.9%) underwent ELISPOT reversion. Of the 210 contacts with complete results, 73 (34.8%) were ELISPOT negative at all three time points; 36 (17.1%) were positive at all three time points. Between recruitment and 18 mo, 20 (27%) contacts had ELISPOT conversion; 37 (50%) had TST conversion, which was associated with a positive recruitment ELISPOT (OR 7.2, 95% CI 1.4–37.1, p = 0.019); 18 (32.7%) underwent ELISPOT reversion; and five (8.9%) underwent TST reversion. Results in 13 contacts diagnosed as having TB were mixed, but suggested higher TST sensitivity. Conclusions Both ELISPOT conversion and reversion occur after M. tuberculosis exposure. Rapid ELISPOT reversion may reflect M. tuberculosis clearance or transition into dormancy and may contribute to the relatively low reported ELISPOT conversion rate. Therefore, a negative ELISPOT test for M. tuberculosis infection should be interpreted with caution.


PLOS ONE | 2008

Incidence of Tuberculosis and the Predictive Value of ELISPOT and Mantoux Tests in Gambian Case Contacts

Philip C. Hill; Dolly Jackson-Sillah; Annette Fox; Roger H. Brookes; Bouke C. de Jong; Moses D. Lugos; Ifedayo Adetifa; Simon Donkor; Alexander M. Aiken; Stephen R. C. Howie; Tumani Corrah; Keith P. W. J. McAdam; Richard A. Adegbola

Background Studies of Tuberculosis (TB) case contacts are increasingly being utilised for understanding the relationship between M. tuberculosis and the human host and for assessing new interventions and diagnostic tests. We aimed to identify the incidence rate of new TB cases among TB contacts and to relate this to their initial Mantoux and ELISPOT test results. Methods and Findings After initial Mantoux and ELISPOT tests and exclusion of co-prevalent TB cases, we followed 2348 household contacts of sputum smear positive TB cases. We visited them at 3 months, 6 months, 12 months, 18 months and 24 months, and investigated those with symptoms consistent with TB. Those who were diagnosed separately at a government clinic had a chest x-ray. Twenty six contacts were diagnosed with definite TB over 4312 person years of follow-up (Incidence rate 603/100,000 person years; 95% Confidence Interval, 370–830). Nine index and secondary case pairs had cultured isolates available for genotyping. Of these, 6 pairs were concordant and 3 were discordant. 2.5% of non-progressors were HIV positive compared to 12% of progressors (HR 6.2; 95% CI 1.7–22.5; p = 0.010). 25 secondary cases had initial Mantoux results, 14 (56%) were positive ; 21 had initial ELISPOT results, 11 (52%) were positive; 15 (71%) of 21 tested were positive by one or the other test. Of the 6 contacts who had concordant isolates with their respective index case, 4 (67%) were Mantoux positive at recruitment, 3 (50%) were ELISPOT positive; 5 (83%) were positive by one or other of the two tests. ELISPOT positive contacts, and those with discordant results, had a similar rate of progression to those who were Mantoux positive. Those negative on either or both tests had the lowest rate of progression. Conclusions The incidence rate of TB disease in Gambian TB case contacts, after screening for co-prevalent cases, was 603/100,000 person years. Since initial ELISPOT test and Mantoux tests were each positive in only just over half of cases, but 71% were positive by one or other test, positivity by either might be the best indication for preventive treatment. These data do not support the replacement of the Mantoux test by an ELISPOT test in The Gambia or similar settings.


PLOS ONE | 2010

Production of TNF-α, IL-12(p40) and IL-17 Can Discriminate between Active TB Disease and Latent Infection in a West African Cohort

Jayne S. Sutherland; Bouke C. de Jong; David Jeffries; Ifedayo Adetifa; Martin O. C. Ota

Background Mycobacterium tuberculosis (MTb) infects approximately 2 billion people world-wide resulting in almost 2 million deaths per year. Determining biomarkers that distinguish different stages of tuberculosis (TB) infection and disease will provide tools for more effective diagnosis and ultimately aid in the development of new vaccine candidates. The current diagnostic kits utilising production of IFN-γ in response to TB antigens can detect MTb infection but are unable to distinguish between infection and disease. The aim of this study was to assess if the use of a longer term assay and the analysis of multiple cytokines would enhance diagnosis of active TB in a TB-endemic population. Methods We compared production of multiple cytokines (TNF-α, IFN-γ, IL-10, IL-12(p40), IL-13, IL-17 and IL-18) following long-term (7 days) stimulation of whole-blood with TB antigens (ESAT-6/CFP-10 (EC), PPD or TB10.4) from TB cases (n = 36) and their Mycobacterium-infected (TST+; n = 20) or uninfected (TST−; n = 19) household contacts (HHC). Results and Conclusions We found that TNF-α production following EC stimulation and TNF-α and IL-12(p40) following TB10.4 stimulation were significantly higher from TB cases compared to TST+ HHC, while production of IFN-γ and IL-13 were significantly higher from TST+ compared to TST- HHC following PPD or EC stimulation. Combined analysis of TNF-α, IL-12(p40) and IL-17 following TB10.4 stimulation resulted in 85% correct classification into TB cases or TST+ HHC. 74% correct classification into TST+ or TST− HHC was achieved with IFN-γ alone following TB10.4 stimulation (69% following EC) and little enhancement was seen with additional cytokines. We also saw a tendency for TB cases infected with M. africanum to have increased TNF-α and IL-10 production compared to those infected with M. tuberculosis. Our results provide further insight into the pathogenesis of tuberculosis and may enhance the specificity of the currently available diagnostic tests, particularly for diagnosis of active TB.


BMC Infectious Diseases | 2007

Comparison of two interferon gamma release assays in the diagnosis of Mycobacterium tuberculosis infection and disease in The Gambia

Ifedayo Adetifa; Moses D. Lugos; Abdulrahman S. Hammond; David Jeffries; Simon Donkor; Richard A. Adegbola; Philip C. Hill

BackgroundIFN-γ Release Assays (IGRAs) have been licensed for the diagnosis of latent Mycobacterium tuberculosis infection (LTBI). Their performance may depend on assay format and may vary across populations and settings. We compared the diagnostic performance of an in-house T -cell and commercial whole blood-based IGRAs for the diagnosis of LTBI and TB disease in The Gambia.MethodsNewly diagnosed sputum smear positive cases and their household contacts were recruited. Cases and contacts were bled for IGRA and contacts had a Mantoux skin test. We assessed agreement and discordance between the tests and categorized a contacts level of M. tuberculosis exposure according to where s/he slept relative to a case: the same room, same house or a different house. We assessed the relationship between exposure and test results by multiple logistic regression.ResultsIn 80 newly diagnosed TB cases, the sensitivity of ELISPOT was 78.7% and for QFT-GIT was 64.0% (p = 0.047). Of 194 household contacts 57.1% and 58.8% were positive for ELISPOT and QFT-GIT respectively. The overall agreement between both IGRAs for LTBI in contacts was 71.4% and there was no significant discordance (p = 0.29). There was significant discordance between the IGRAs and TST. Neither IGRA nor TST had evidence of false positive results because of Bacille Calmette Guérin (BCG) vaccination. However, agreement between QFT-GIT and TST as well as discordance between both IGRAs and TST were associated with BCG vaccination. Both IGRAs responded to the M. tuberculosis exposure gradient and were positively associated with increasing TST induration (p = 0.003 for ELISPOT and p = 0.001 for QFT-GIT).ConclusionThe ELISPOT test is more sensitive than the QFT-GIT for diagnosing TB disease. The two tests perform similarly in the diagnosis of LTBI in TB contacts. Significant discordance between the two IGRAs and between each and the TST remain largely unexplained.


PLOS ONE | 2010

Expanded Polyfunctional T Cell Response to Mycobacterial Antigens in TB Disease and Contraction Post-Treatment

James M. Young; Ifedayo Adetifa; Martin O. C. Ota; Jayne S. Sutherland

Background T cells producing multiple factors have been shown to be required for protection from disease progression in HIV but we have recently shown this not to be the case in TB. Subjects with active disease had a greater proportion of polyfunctional cells responding to ESAT-6/CFP-10 stimulation than their infected but non-diseased household contacts (HHC). We therefore wanted to assess this profile in subjects who had successfully completed standard TB chemotherapy. Methods We performed a cross-sectional study using PBMC from TB cases (pre- and post-treatment) and HHC. Samples were stimulated overnight with TB antigens (ESAT-6/CFP-10 and PPD) and their CD4+ and CD8+ T cells were assessed for production of CD107a, IFN-γ, IL-2 and TNF-α and the complexity of the responses was determined using SPICE and PESTLE software. Results and Conclusions We found that an increase in complexity (i.e., production of more than 1 factor simultaneously) of the T cell profile was associated with TB disease and that this was significantly reduced following TB treatment. This implies that T cells are able to respond adequately to TB antigens with active disease (at least initially) but the ability of this response to protect the host from disease progression is hampered, presumably due to immune evasion strategies by the bacteria. These findings have implications for the development of new diagnostics and vaccine strategies.


PeerJ | 2014

Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer

Emma L. Doughty; Martin J. Sergeant; Ifedayo Adetifa; Martin Antonio; Mark J. Pallen

Tuberculosis remains a major global health problem. Laboratory diagnostic methods that allow effective, early detection of cases are central to management of tuberculosis in the individual patient and in the community. Since the 1880s, laboratory diagnosis of tuberculosis has relied primarily on microscopy and culture. However, microscopy fails to provide species- or lineage-level identification and culture-based workflows for diagnosis of tuberculosis remain complex, expensive, slow, technically demanding and poorly able to handle mixed infections. We therefore explored the potential of shotgun metagenomics, sequencing of DNA from samples without culture or target-specific amplification or capture, to detect and characterise strains from the Mycobacterium tuberculosis complex in smear-positive sputum samples obtained from The Gambia in West Africa. Eight smear- and culture-positive sputum samples were investigated using a differential-lysis protocol followed by a kit-based DNA extraction method, with sequencing performed on a benchtop sequencing instrument, the Illumina MiSeq. The number of sequence reads in each sputum-derived metagenome ranged from 989,442 to 2,818,238. The proportion of reads in each metagenome mapping against the human genome ranged from 20% to 99%. We were able to detect sequences from the M. tuberculosis complex in all eight samples, with coverage of the H37Rv reference genome ranging from 0.002X to 0.7X. By analysing the distribution of large sequence polymorphisms (deletions and the locations of the insertion element IS6110) and single nucleotide polymorphisms (SNPs), we were able to assign seven of eight metagenome-derived genomes to a species and lineage within the M. tuberculosis complex. Two metagenome-derived mycobacterial genomes were assigned to M. africanum, a species largely confined to West Africa; the others that could be assigned belonged to lineages T, H or LAM within the clade of “modern” M. tuberculosis strains. We have provided proof of principle that shotgun metagenomics can be used to detect and characterise M. tuberculosis sequences from sputum samples without culture or target-specific amplification or capture, using an accessible benchtop-sequencing platform, the Illumina MiSeq, and relatively simple DNA extraction, sequencing and bioinformatics protocols. In our hands, sputum metagenomics does not yet deliver sufficient depth of coverage to allow sequence-based sensitivity testing; it remains to be determined whether improvements in DNA extraction protocols alone can deliver this or whether culture, capture or amplification steps will be required. Nonetheless, we can foresee a tipping point when a unified automated metagenomics-based workflow might start to compete with the plethora of methods currently in use in the diagnostic microbiology laboratory.

Collaboration


Dive into the Ifedayo Adetifa's collaboration.

Top Co-Authors

Avatar

Simon Donkor

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Antonio

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bouke C. de Jong

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar

David Jeffries

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Moses D. Lugos

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Tom H. M. Ottenhoff

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge