Iginio Longo
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iginio Longo.
Journal of Hazardous Materials | 2011
Huilun Chen; Emilia Bramanti; Iginio Longo; Massimo Onor; Carlo Ferrari
The simultaneous application of microwave (MW) power and UV light leads to improved results in photochemical processes. This study investigates the oxidative decomposition of atrazine in water using an innovative MW and UV photochemical reactor, which activates a chemical reaction with MW and UV radiation using an immersed source without the need for a MW oven. We investigated the influence of reaction parameters such as initial H(2)O(2) concentrations, reaction temperatures and applied MW power and identified the optimal conditions for the oxidative decomposition of atrazine. Atrazine was completely degraded by MW/UV/H(2)O(2) in a very short time (i.e. t(1/2) = 1.1 min for 20.8 mg/L in optimal conditions). From the kinetic study, the disappearance rate of atrazine can be expressed as dX/dt = k(PH)[M](0)(b-X)(1-X), where b ≡ [H(2)O(2)](0)/[M](0)+k(OH)[·OH]/k(PH)[M](0), and X is the atrazine conversion, which correlates well with the experimental data. The kinetic analysis also showed that an indirect reaction of atrazine with an OH radical is dominant at low concentrations of H(2)O(2) and a direct reaction of atrazine with H(2)O(2) is dominant when the concentration of H(2)O(2) is more than 200 mg/L.
Green Chemistry | 2014
José González-Rivera; Ignacio René Galindo-Esquivel; Massimo Onor; Emilia Bramanti; Iginio Longo; Carlo Ferrari
Zeolite Beta, modified with some salts of alkali and alkaline earth metals (K, Zn, Sn), was tested in the hydrothermal heterogeneous catalytic decomposition of microcrystalline cellulose. The reactions were microwave-assisted, where the microwaves were issued by an in situ coaxial applicator. Zeolites were subjected to an ion-exchange process which determines the loss of crystallinity in the following order: Sn-Beta-IE > K-Beta > Zn-Beta > acid form H-Beta. The interaction between zeolites and microwaves was studied by irradiating zeolite powder under constant power and the heating response was in the following order: K-Beta > NH4-Beta > Sn-Beta-IE ≈ Zn-Beta > H-Beta > alumina. These results show that the nature of the counterion strongly affects the absorption of microwaves. The catalytic activity of the different systems on the cellulose decomposition was studied, and resulted in the following order: H-Beta > K-Beta > Zn-Beta > Sn-Beta-IE > alumina, when the reaction medium contained 5 mM HCl. The most active catalyst was the acid zeolite Beta and the identified product distribution under the investigated conditions was (mol yield %): levulinic acid (22.3), glucose (12.1), lactic acid (4.1), formic acid (6.6), 5-(hydroxymethyl) furfural (14.6), acetic acid (15.2) and furfuraldehyde (3.1). The effect of temperature, time and the heterogeneous catalyst reuse (H-Beta) on the yields of different products was investigated. The use of MW radiation with a coaxial applicator instead of conventional heating gave clear advantages in the decrease of the reaction time (45 min) and in terms of yield enhancement (78.6% under the best conditions).
Journal of Materials Chemistry | 2014
J. González-Rivera; J. Tovar-Rodríguez; Emilia Bramanti; Celia Duce; Iginio Longo; Emiliano Fratini; Ignacio René Galindo-Esquivel; Carlo Ferrari
Different metal substituted (Y, Sn and Ce) MCM-41 materials were synthesized and detemplated by a low temperature surfactant removal methodology. All metal substituted materials showed an increase in the d100 lattice parameter compared to the parent MCM-41 matrices. The increase depends on both the metal type and amount that is successfully incorporated by direct conventional hydrothermal synthesis. The metal modified MCM-41 materials were detemplated by an ultrasound assisted (US) ion-exchange process using methanol as the solvent (NH4NO3/US/MeOH). The effect of the ultrasound amplitude, extraction time and salt concentration were explored, and optimal values were determined for Y–MCM-41 detemplation (40 mM of NH4NO3, 60% of US amplitude and 15 min of adiabatic treatment). The removal percentage achieved with these values was in the following order: Y (97.7%) > Ce (94.4%) > Sn (92.1%) > Si (90.3%). Several techniques (SAXS, FTIR, TGA, 1H MAS, 29Si HPDEC MAS NMR and N2 physisorption) demonstrated that the mesoporous materials keep their hexagonal structure and high surface area after the NH4NO3/US/MeOH surfactant extraction. Moreover, the thermal shrinkage of the structure was reduced in the following order: Si (0.6%) < Sn (4%) < Ce (5%) < Y (9%) < calcined samples (from 9 to 15%). The surfactant recovered was successfully recycled in a consecutive microwave assisted hydrothermal synthesis cycle (MW-HT). The synergy of different strategies (MW-HT synthesis, NH4NO3/US/MeOH surfactant removal and surfactant recovery) produces considerable time, energy and cost abatement, environmental impact reduction and promising scale up projections in the eco-friendly synthesis of MCM-41 materials.
International Journal of Photoenergy | 2013
Carlo Ferrari; Huilun Chen; R. Lavezza; C. Santinelli; Iginio Longo; Emilia Bramanti
The oxidative decoloration of Rhodamine B (RhB) was performed in a photochemical reactor which enables microwave (MW) and UV radiation to be applied simultaneously. We used an immersed microwave source, with no need for an oven. Controlling the temperature, MW power, and UV emission of the reactor all led to a greater overall control of the process. Due to the action of highly reactive hydroxyl radicals, the decoloration of RhB was followed online using a spectrograph. Complete decoloration occurred in four minutes, and 92% of mineralisation was obtained in 70 minutes. The experiments were performed at various temperatures (21°C, 30°C, 37°C, and 46°C), with and without hydrogen peroxide. The apparent reaction rate was used to calculate the apparent activation energy of the decoloration process: kJ/mol and kJ/mol with (400 mg/L) or without hydrogen peroxide, respectively. The lack of deviation from the linear behavior of the Arrhenius plot confirms that the application of MW does not affect the of the process. The apparent activation energy value found was compared with the few data available in the literature, which were obtained in the absence of MW radiation and are inconsistent.
Green Chemistry | 2016
José González-Rivera; Alessio Spepi; Carlo Ferrari; Celia Duce; Iginio Longo; Danilo Falconieri; Alessandra Piras; Maria Rosaria Tine
Innovative extraction configurations for the biorefining of a biomass waste (citrus peel) were developed in this work. Non-conventional energies, such as microwaves (MW) and ultrasounds (US), were directly irradiated to the fresh orange peel using a versatile MW coaxial dipole antenna. This particular MW configuration enabled us to build two new extraction systems: (1) a coaxial solventless MW-assisted extraction (SMWAE) approach and, (2) a simultaneous ultrasound coaxial MW-assisted hydrodistillation (US-MWHD) method. The yield and chemical composition of the essential oils (EOs) of the orange peel obtained by the two innovative approaches were analyzed as a function of the extraction time and compared with those from coaxial microwave hydrodistillation (MWHD) and conventional hydrodistillation (CH). The EOs were chemically characterized by GC and GC-MS analysis. The residue mash was then used to extract pectin by a MW-assisted procedure. The structure and thermal stability of the pectin were investigated by FTIR and TG. The biorefining of EOs and pectin from a citrus waste maximises the benefits of our proposed green methodologies, which involve safe operability, faster processing and easy scalability. Furthermore, the energy consumed per unit mass of products in each step of the orange peel biorefining clearly showed that the most promising approach is SMWAE (since it is around 27 times lower than the CH approach). MWHD and US-MWHD also showed more than 60% energy savings compared to CH.
International Journal of Chemical Reactor Engineering | 2010
Carlo Ferrari; Iginio Longo; Elpidio Tombari; Luca Gasperini
A new integrated photoreactor was assembled using a newly designed source, emitting both microwave power and UV radiation inside the reacting medium. The method is highly flexible and cheap, eliminating the need for the multimode and monomode microwave applicators, which are currently used for the excitation of a microwave electrodeless lamp. The characteristics of the source and the results from the decolorization of Acid Orange AO7 in an aqueous solution with hydrogen peroxide are presented. The decolorization process was carried out in batch condition and as continuous treatment and the effective reaction constant of the processes are reported. The experiments show that the photoreactor could be suitable for industrial application.
Journal of Electromagnetic Waves and Applications | 2014
Carlo Ferrari; Iginio Longo; L. Socci; M. Cavagnaro
The construction and operating characteristics of a microwave (MW) electrodeless UV lamp are described. Instead of using a MW oven or a MW cavity to excite a plasma discharge in a glass bulb, in this work the optical radiation emitted by the gaseous plasma discharge is produced by the near field of a coaxial cable dipole antenna placed inside the recess of the quartz bulb. Experimental results are reported, which were obtained by applying MW power up to 700 W in continuous wave regime to an Ar–Hg filled cylindrical bulb, and 160 W to a XeBr2 filled spherical bulb at 2.45 GHz. The UV emission from a 6 W Ar–Hg lamp is compared with a commercial lamp, demonstrating the advantages of the new method in terms of efficiency. When the lamp is excited at high MW levels, the MW coaxial antenna is cooled using forced air or water flowing into the glass recess. The physical modeling of the electromagnetic field distribution in the near-field region of the antenna and its interaction with the gaseous discharge are in good agreement with experimental results. The article focuses on the advantages of the non-cavity activation method of the UV lamp, taking into account industrial applications. In fact, the coaxial antenna excitation method is characterized by extreme simplicity, due to the absence of resonant metal enclosures. Thus, the ordinary MW cavity can be replaced by a number of independent MW UV emitters, placed inside a reaction vessel of arbitrary size and material.
Journal of Photochemistry and Photobiology A-chemistry | 2009
Carlo Ferrari; Iginio Longo; Elpidio Tombari; Emilia Bramanti
ChemistrySelect | 2017
José González-Rivera; Celia Duce; Vincenzo Ierardi; Iginio Longo; Alessio Spepi; Maria Rosaria Tine; Carlo Ferrari
Archive | 2014
Andrew David Paul Harbourne; Pradyumna Kumar Swain; Iginio Longo; Carlo Ferrari