Igino Corona
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igino Corona.
european conference on machine learning | 2013
Battista Biggio; Igino Corona; Davide Maiorca; Blaine Nelson; Nedim Šrndić; Pavel Laskov; Giorgio Giacinto; Fabio Roli
In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attackers knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.
annual computer security applications conference | 2009
Roberto Perdisci; Igino Corona; David Dagon; Wenke Lee
In this paper we propose a novel, passive approach for detecting and tracking malicious flux service networks. Our detection system is based on passive analysis of recursive DNS (RDNS) traffic traces collected from multiple large networks. Contrary to previous work, our approach is not limited to the analysis of suspicious domain names extracted from spam emails or precompiled domain blacklists. Instead, our approach is able to detect malicious flux service networks in-the-wild, i.e., as they are accessed by users who fall victims of malicious content advertised through blog spam, instant messaging spam, social website spam, etc., beside email spam. We experiment with the RDNS traffic passively collected at two large ISP networks. Overall, our sensors monitored more than 2.5 billion DNS queries per day from millions of distinct source IPs for a period of 45 days. Our experimental results show that the proposed approach is able to accurately detect malicious flux service networks. Furthermore, we show how our passive detection and tracking of malicious flux service networks may benefit spam filtering applications.
Information Sciences | 2013
Igino Corona; Giorgio Giacinto; Fabio Roli
Intrusion Detection Systems (IDSs) are one of the key components for securing computing infrastructures. Their objective is to protect against attempts to violate defense mechanisms. Indeed, IDSs themselves are part of the computing infrastructure, and thus they may be attacked by the same adversaries they are designed to detect. This is a relevant aspect, especially in safety-critical environments, such as hospitals, aircrafts, nuclear power plants, etc. To the best of our knowledge, this survey is the first work to present an overview on adversarial attacks against IDSs. In particular, this paper will provide the following original contributions: (a) a general taxonomy of attack tactics against IDSs; (b) an extensive description of how such attacks can be implemented by exploiting IDS weaknesses at different abstraction levels; (c) for each attack implementation, a critical investigation of proposed solutions and open points. Finally, this paper will highlight the most promising research directions for the design of adversary-aware, harder-to-defeat IDS solutions. To this end, we leverage on our research experience in the field of intrusion detection, as well as on a thorough investigation of the relevant related works published so far.
Information Fusion | 2009
Igino Corona; Giorgio Giacinto; Claudio Mazzariello; Fabio Roli; Carlo Sansone
In this paper, we critically review the issue of information fusion for computer security, both in terms of problem formulation and in terms of state-of-the-art solutions. We also analyze main strengths and weaknesses of currently used approaches and propose some research issues that should be investigated in the future.
computer and communications security | 2013
Davide Maiorca; Igino Corona; Giorgio Giacinto
PDF files have proved to be excellent malicious-code bearing vectors. Thanks to their flexible logical structure, an attack can be hidden in several ways, and easily deceive protection mechanisms based on file-type filtering. Recent work showed that malicious PDF files can be accurately detected by analyzing their logical structure, with excellent results. In this paper, we present and practically demonstrate a novel evasion technique, called reverse mimicry, that can easily defeat such kind of analysis. We implement it using real samples and validate our approach by testing it against various PDF malware detectors proposed so far. Finally, we highlight the importance of developing systems robust to adversarial attacks and propose a framework to strengthen PDF malware detection against evasion.
machine learning and data mining in pattern recognition | 2012
Davide Maiorca; Giorgio Giacinto; Igino Corona
Malicious PDF files have been used to harm computer security during the past two-three years, and modern antivirus are proving to be not completely effective against this kind of threat. In this paper an innovative technique, which combines a feature extractor module strongly related to the structure of PDF files and an effective classifier, is presented. This system has proven to be more effective than other state-of-the-art research tools for malicious PDF detection, as well as than most of antivirus in commerce. Moreover, its flexibility allows adopting it either as a stand-alone tool or as plug-in to improve the performance of an already installed antivirus.
Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop | 2014
Battista Biggio; Konrad Rieck; Davide Ariu; Christian Wressnegger; Igino Corona; Giorgio Giacinto; Fabio Roli
Clustering algorithms have become a popular tool in computer security to analyze the behavior of malware variants, identify novel malware families, and generate signatures for antivirus systems. However, the suitability of clustering algorithms for security-sensitive settings has been recently questioned by showing that they can be significantly compromised if an attacker can exercise some control over the input data. In this paper, we revisit this problem by focusing on behavioral malware clustering approaches, and investigate whether and to what extent an attacker may be able to subvert these approaches through a careful injection of samples with poisoning behavior. To this end, we present a case study on Malheur, an open-source tool for behavioral malware clustering. Our experiments not only demonstrate that this tool is vulnerable to poisoning attacks, but also that it can be significantly compromised even if the attacker can only inject a very small percentage of attacks into the input data. As a remedy, we discuss possible countermeasures and highlight the need for more secure clustering algorithms.
international conference on communications | 2009
Igino Corona; Davide Ariu; Giorgio Giacinto
Nowadays, the web-based architecture is the most frequently used for a wide range of internet services, as it allows to easily access and manage information and software on remote machines. The input of web applications is made up of queries, i.e. sequences of pairs attribute←value. A wide range of attacks exploits web application vulnerabilities, typically derived from input validation flaws. In this work we propose a new formulation of query analysis through Hidden Markov Models (HMM) and show that HMM are effective in detecting a wide range of either known or unknown attacks on web applications. In addition, despite previous works, we explicitly address the problem related to the presence of noise (i.e., attacks) in the training set. Finally, we show that performance can be increased when a sequence of symbols is modelled by an ensemble of HMM. Experimental results on real world data, show the effectiveness of the proposed system in terms of very high detection rates and low false alarm rates.
arXiv: Learning | 2014
Battista Biggio; Igino Corona; Blaine Nelson; Benjamin I. P. Rubinstein; Davide Maiorca; Giorgio Fumera; Giorgio Giacinto; Fabio Roli
Support vector machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion) or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.
IEEE Transactions on Dependable and Secure Computing | 2017
Ambra Demontis; Marco Melis; Battista Biggio; Davide Maiorca; Daniel Arp; Konrad Rieck; Igino Corona; Giorgio Giacinto; Fabio Roli
To cope with the increasing variability and sophistication of modern attacks, machine learning has been widely adopted as a statistically-sound tool for malware detection. However, its security against well-crafted attacks has not only been recently questioned, but it has been shown that machine learning exhibits inherent vulnerabilities that can be exploited to evade detection at test time. In other words, machine learning itself can be the weakest link in a security system. In this paper, we rely upon a previously-proposed attack framework to categorize potential attack scenarios against learning-based malware detection tools, by modeling attackers with different skills and capabilities. We then define and implement a set of corresponding evasion attacks to thoroughly assess the security of Drebin, an Android malware detector. The main contribution of this work is the proposal of a simple and scalable secure-learning paradigm that mitigates the impact of evasion attacks, while only slightly worsening the detection rate in the absence of attack. We finally argue that our secure-learning approach can also be readily applied to other malware detection tasks.