Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignác Capek is active.

Publication


Featured researches published by Ignác Capek.


Advances in Colloid and Interface Science | 2004

Degradation of kinetically-stable o/w emulsions

Ignác Capek

This article summarizes the studies on the degradation of the thermodynamically unstable o/w (nano)emulsion--a dispersion of one liquid in another, where each liquid is immiscible, or poorly miscible in the other. Emulsions are unstable exhibiting flocculation, coalescence, creaming and degradation. The physical degradation of emulsions is due to the spontaneous trend toward a minimal interfacial area between the dispersed phase and the dispersion medium. Minimizing the interfacial area is mainly achieved by two mechanisms: first coagulation possibly followed by coalescence and second by Ostwald ripening. Coalescence is often considered as the most important destabilization mechanism leading to coursing of dispersions and can be prevented by a careful choice of stabilizers. The molecular diffusion of solubilizate (Ostwald ripening), however, will continuously occur as soon as curved interfaces are present. Mass transfers in emulsion may be driven not only by differences in droplet curvatures, but also by differences in their compositions. This is observed when two or more chemically different oils are emulsified separately and the resulting emulsions are mixed. Compositional ripening involves the exchange of oil molecules between emulsion droplets with different compositions. The stability of the electrostatically- and sterically-stabilized dispersions can be controlled by the charge of the electrical double layer and the thickness of the droplet surface layer formed by non-ionic emulsifier. In spite of the similarities between electrostatically- and sterically-stabilized emulsions, there are large differences in the partitioning of molecules of ionic and non-ionic emulsifiers between the oil and water phases and the thickness of the interfacial layers at the droplet surface. The thin interfacial layer (the electrical double layer) at the surface of electrostatically stabilized droplets does not create any steric barrier for mass transfer. This may not be true for the thick interfacial layer formed by non-ionic emulsifier. The interactive sterically-stabilized oil droplets, however, can favor the transfer of materials within the intermediate agglomerates. The stability of electrosterically-stabilized emulsion is controlled by the ratio of the thickness of the non-ionic emulsifier adsorption layer (delta) to the thickness of the electrical double layer (kappa(-1)) around the oil droplets (delta/(kappa(-1))) = (deltakappa). The monomer droplet degradation can be somewhat depressed by transformation of coarse emulsions to nano-emulsion (miniemulsion) by intensive homogenization and by the addition of a surface active agent (coemulsifier) or/and a water-insoluble compound (hydrophobe). The addition of hydrophobe (hexadecane) to the dispersed phase significantly retards the rate of ripening. A long chain alcohol (coemulsifier) resulted in a marked improvement in stability, as well, which was attributed to a specific interaction between alcohol and emulsifier and to the alcohols tendency to concentrate at the o/w interface to form stronger interfacial film. The rate of ripening, according to the Lifshitz-Slyozov-Wagner (LSW) model, is directly proportional to the solubility of the dispersed phase in the dispersion medium. The increased polarity of the dispersed phase (oil) decreases the stability of the emulsion. The molar volume of solubilizate is a further parameter, which influences the stability of emulsion or the transfer of materials through the aqueous phase. The interparticle interaction is expected to favor the transfer of solubilizate located at the interfacial layer. The kinetics of solubilization of non-polar oils by ionic micelles is strongly related to the aqueous solubility of the oil phase (the diffusion approach), whilst their solubilization into non-ionic micelles can be contributed by interparticle collisions.


Advances in Polymer Science | 2001

Radical Polymerization in Direct Mini-Emulsion Systems

Ignác Capek; Chorng-Shyan Chern

Polymerization in direct mini-emulsions is a relatively new polymerization technique which allows the preparation of submicron latex particles within the range 100<particle diameter<500 nm. This process involves the generation of a large population of submicron monomer droplets in water (termed the mini-emulsion) by intensive shear force with the aid of an adequate emulsifier and coemulsifier (or hydrophobe). These stable, homogenized monomer droplets have an extremely large surface area and, therefore, can compete effectively with the monomer-swollen micelles, if present, for the oligomeric radicals generated in water. Monomer droplets may thus become the predominant loci for particle nucleation and polymerization. This article presents a review of the current literature in the field of radical polymerization of conventional monomers and surface-active monomers in direct mini-emulsion systems. Besides a short introduction into some kinetic aspects of radical polymerization in direct emulsion, mini-emulsion and micro-emulsion systems, we mainly focus on the particle nucleation mechanisms and the common and different features between the classical emulsion and finer mini-emulsion polymerization systems. The effects of the type and concentration of initiator, emulsifier, coemulsifier (hydrophobe) and monomer are evaluated. The influence of the complex formation, the close-packed structure, etc. within the mini-emulsion droplet surface layer on the colloidal stability, the nature of the surface film, and the radical entry process are summarized and discussed. These results show that the nature of the coemulsifier (hydrophobe), the weight ratio of emulsifier to coemulsifier, the mechanisms of sonification, the stability of monomer droplets, and the presence or absence of free micelles play a decisive role in the polymerization process.


Advances in Colloid and Interface Science | 2002

Fate of excited probes in micellar systems

Ignác Capek

This article presents studies on the photophysical and photochemical behavior of probes within micellar systems: organized emulsifier/polymer aggregates; the intra- and interpolymer association of amphiphilic polymers; monomer-swollen micelles (microdroplets); and the interfacial layer. Pyrene (Py) as a probe is particularly attractive because of its ability to measure the polarity of its microenvironment. Dipyme yields information on the microviscosity of micellar systems. Probes such as laurdan and prodan can be used to explore the surface characteristics of micelles or microdroplets. The dansyl group has a special photophysical property that gives information about the local polarity and mobility (viscosity) of the microenvironment. The organized association of amphiphilic polymer and emulsifier introduces a heterogeneity in the local concentration of the reactants. This heterogeneity also results from the attractive interaction between hydrophilic monomer and emulsifier in the case when the monomer carries a positive charge and the counterpart a negative one, and vice versa. Some emulsifiers can bind to the amphiphilic copolymers by simple partitioning between the aqueous phase and the polymer--non-cooperative association. The interaction between micelles (microdroplets) and charged polymers leads to the formation of mixed micelles. Binding emulsifiers to these polymers was detected at emulsifier concentrations much below the critical micellar concentration (CMC). Emulsifiers often interact cooperatively with polymers at the critical aggregation concentration (CAC) below the CMC, forming micelle-like aggregates within the polymer. The CAC can be taken as a measure of interaction between the emulsifier and polymer. A decrease in the monomer fluorescence intensity of probe-labeled polymer results from increased excimer formation, or higher aggregates within the unimolecular polymeric micelles. An increase in the monomer fluorescence intensity of probe-labeled polymer within the micellar system can be ascribed to shielding of the probe chromophores by emulsifier micelles. The quenching of probe emission by (un)charged hydrophilic monomer depends on partitioning of the monomer between the aqueous phase and the micelles. Penetration of reactants into the interfacial layer determines the quenching of the hydrophobic probe by hydrophilic quencher, or vice versa. Quenching depends on the thickness, density and charge of the interfacial layer. Compartmentalization prevents the carbonyl compound and unsaturated monomer from coming into sufficiently close contact to allow singlet or triplet-monomer interaction. All negatively charged carbonyl probe molecules are quenched with significantly lower rates than the parent neutral hydrophobic benzophenone molecules, which were located further inside the aggregates. This results from the different conformation and allocation of reactants within the micellar system. In the reverse micelles, quenching depends on the amount of water in the interfacial layer and the total area of the water/oil interface.


Advances in Colloid and Interface Science | 1999

Radical polymerization of polar unsaturated monomers in direct microemulsion systems

Ignác Capek

Abstract Polymerization in o/w microemulsions is a new polymerization technique which allows preparation of ultrafine latex particles within the size range 5 nm


European Polymer Journal | 1995

Microemulsion and emulsion polymerization of butyl acrylate—I. Effect of the initiator type and temperature

Ignác Capek; Pavol Potisk

Abstract Oil-in-water-type (o/w) microemulsion and emulsion polymerizations of butyl acrylate (BA) initiated by ammonium peroxodisulfate (AP, a water-soluble radical initiator) and dibenzoyl peroxide (DBP, an oil-soluble radical initiator) with sodium dodecylsulfate (SDS) as an anionic emulsifier were kinetically investigated. Emulsion polymerizations were faster than those in microemulsion. The rates of emulsion or microemulsion polymerization were larger with AP. The size of particles and the polymer molecular weight decreased with increasing temperature. The number of particles and the average particle radical number increased with increasing temperature. The overall activation energy ( E o ) for the BA radical polymerization was found to decrease in the following order: bulk or solution ( ca 120 kJ mol −1 ) > microemulsion ( ca 60 kj mol −1 ) > emulsion polymerization ( ca 15 kj mol −1 ). The E o for the microemulsion polymerization was independent of conversion ca up to 60%. The strong decrease in the E o observed after 60% conversion and the low value for E o in disperse systems were ascribed to diffusion controlled termination.


Advances in Colloid and Interface Science | 1999

Microemulsion polymerization of styrene in the presence of a cationic emulsifier

Ignác Capek

The principal subject discussed in the current paper is the radical polymerization of styrene in the three- and four component microemulsions stabilized by a cationic emulsifier. Polymerization in the o/w microemulsion is a new polymerization technique which allows to prepare the polymer latexes with the very high particle interface area and narrow particle size distribution. Polymers formed are very large with a very broad molecular weight distribution. In emulsion and microemulsion polymerizations, the reaction takes place in a large number of isolated loci dispersed in the continuous aqueous phase. However, in spite of the similarities between emulsion and microemulsion polymerization, there are large differences caused by the much larger amount of emulsifier in the latter process. In the emulsion polymerization there are three rate intervals. In the microemulsion polymerization only two reaction rate intervals are commonly detected: first, the polymerization rate increases rapidly with the reaction time and then decreases steadily. Essential features of microemulsion polymerization are as follows: (1) polymerization proceeds under non-stationary state conditions; (2) size and particle concentration increases throughout the course of polymerization; (3) chain-transfer to monomer/exit of transferred monomeric radical/radical re-entry events are operative; and (4) molecular weight is independent of conversion and distribution of resulting polymer is very broad. The number of microdroplets or monomer-starved micelles at higher conversion is high and they persist throughout the reaction. The high emulsifier/water ratio ensures that the emulsifier is undissociated and can penetrate into the microdroplets. The presence of a large amount of emulsifier strongly influences the reaction kinetics and the particle nucleation. The mixed mode particle nucleation is assumed to govern the polymerization process. At low emulsifier concentration the micellar nucleation is dominant while at a high emulsifier concentration the interaction-like homogeneous nucleation is operative. Furthermore, the paper is focused on the initiation and nucleation mechanisms, location of initiation locus, and growth and deactivation of latex particles. Furthermore, the relationship between kinetic and molecular weight parameters of the microemulsion polymerization process and colloidal (water/particle interface) parameters is discussed. In particular, we follow the effect of initiator and emulsifier type and concentration on the polymerization process. Besides, the effects of monomer concentration and additives are also evaluated.


Advances in Colloid and Interface Science | 2002

Sterically and electrosterically stabilized emulsion polymerization. Kinetics and preparation

Ignác Capek

The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.


Advances in Colloid and Interface Science | 2010

On inverse miniemulsion polymerization of conventional water-soluble monomers

Ignác Capek

Inverse monomer miniemulsions can be generated by sonification of the polar monomer, water, stabilizer and costabilizer in organic solvents as the unpolar continuous phase. The inverse miniemulsion obtains its stability by using a combination of effective surfactant and osmotic pressure agent, so called lypophobe, which is practically insoluble in the continuous phase and prevents the minidroplets from Ostwald ripening. Inverse miniemulsions are typically sterically stabilized with a nonionic surfactant blend so as to provide a relatively condensed interface. The monomer droplet nucleation proceeds under an uncomplete coverage of the monomer and polymer particles with surfactant. Inverse monomer miniemulsions can be easily polymerized to latexes by using water and oil-soluble initiators. The rate of inverse miniemulsion polymerization of water-soluble monomers increased with increasing both initiator and emulsifier concentrations. The inverse polymerization is very fast and the high conversion is reached during a few minutes. The dependence of the polymerization rate vs. conversion can be described by a curve with the two rate intervals. The abrupt increase in the polymerization rate can be attributed to the increased number of reaction loci and the gel effect. The partitioning of unsaturated monomers between the aqueous and continuous phases favours the contribution of homogeneous nucleation. The desorption of monomeric radicals from the small polymer particles favours the polymerization in the continuous phase. The miniemulsion polymerization and copolymerization is ideal process for the preparation of composite nanoparticles with different structures. This procedure can be used to develop novel thermally responsive polymer microspheres, for example, based on N-isopropylacrylamide monomer. The composite magnetic nanoparticles are prepared by polymerization of both water-soluble and oil-soluble monomers in the presence of water- and oil-soluble iron oxide nanoparticles. The inverse miniemulsion copolymerization of acrylic acid and sodium acrylate in the presence of inorganic nanoparticles and substances produces poly(acrylic acid-co-sodium acrylate)/inorganic phase composite nanoparticles. The presence of hydrophobic monomer in the miniemulsion system favours the formation of hollow nanoparticles. The composite latex particles owned better thermal stability and higher colloidal stability than pure latex particles.


Journal of Polymer Science Part A | 1997

Dispersion copolymerization of poly(oxyethylene) macromonomers and styrene

Ignác Capek; Medyan Riza; Mitsuru Akashi

The kinetics of dispersion copolymerization of methacryloyl-terminated poly(oxyethylene)(PEO-MA) and p-vinylbenzyl-terminated (PEO-St) polyoxyethylene macromonomers and styrene (St), initiated by a water- and/or oil-soluble initiator, was investigated using conventional gravimetric and NMR methods at 60°C. The batch copolymerizations in the water/ethanol continuous phase were conducted to high conversion. The rate of polymerization was described by the curve with a maximum at very low conversion. The initial rate of polymerization and the number-average molecular weight were found to decrease with increasing [PEO-MA], and the decrease was more pronounced in the range of a high macromonomer concentration. The rate per particle (at ca. 20% conversion ) was found to be proportional to the -1.55th, the particle size to the -0.92nd, and the number of particles (at final conversion) to the 3.2nd power of [PEO-MA], respectively. At the beginning of polymerization the continuous phase is the main reaction locus. As the polymerization advances, the reaction locus is shifted from the continuous phase to the polymer particles. The transform of the reaction loci from the continuous phase to the polymer particles increases the rate of polymerization and the polymer molecular weights. The increase of the weight ratio PEO-MA/St favors the formation of monodisperse polymer particles, the colloidal stability of dispersion, and the formation of a larger number of polymer particles.


Advances in Colloid and Interface Science | 2001

On the role of oil-soluble initiators in the radical polymerization of micellar systems

Ignác Capek

Polymerization in micellar systems is a technique which allows the preparation of ultrafine as well as coarse latex particles. This article presents a review of the current literature in the field of radical polymerization of classical monomers in micellar systems initiated by oil-soluble initiators. Besides a short introduction to some of the kinetic aspects of emulsion polymerization initiated by water-soluble initiators, we mainly focus on the kinetics and the mechanism of radical polymerization in o/w and w/o micellar systems initiated by classical oil-soluble initiators. The initiation of emulsion polymerization of an unsaturated monomer (styrene, butyl acrylate,...) by a water-soluble initiator (ammonium peroxodisulfate) is well understood. It starts in the aqueous phase and the initiating radicals enter the monomer-swollen micelle. The formed oligomeric radicals are surface active and increase the colloidal stability of the disperse system. Besides, the charged initiating radicals might experience the energetic barrier when entering the charged particle surface. The locus of initiation with oil-soluble initiators is more complex. It can partition between the aqueous-phase and the oil-phase. Besides, the surface-active oil-soluble initiator can penetrate into the interfacial layer. The dissolved oil-soluble initiator in the monomer droplet can experience the cage effect. The small fraction of the oil-soluble initiator dissolved in the aqueous phase takes part in the formation of radicals. The oligomeric radicals formed are uncharged and therefore, they do not experience the energetic barrier when entering the polymer particles. We summarize and discuss the experimental data of radical polymerization of monomers initiated by oil-soluble initiators in terms of partitioning an initiator among the different domains of the multiphase system. The inhibitor approach is used to model the formation of radicals and their history during the polymerization. The nature of the interfacial layer and the type of oil-soluble initiator including the surface active ones are related to the kinetic and colloidal parameters. The emulsifier type and reaction conditions in the polymerization are summarized and discussed.

Collaboration


Dive into the Ignác Capek's collaboration.

Top Co-Authors

Avatar

Jaroslav Bartoň

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Majkova

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Luby

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexander Satka

Slovak University of Technology in Bratislava

View shared research outputs
Top Co-Authors

Avatar

M. Jergel

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dušan Berek

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Chitu

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter Siffalovic

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Karol Vegso

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephan V. Roth

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge