Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignacio Aldana is active.

Publication


Featured researches published by Ignacio Aldana.


European Journal of Medicinal Chemistry | 2003

Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents.

Andrés Jaso; Belén Zarranz; Ignacio Aldana; Antonio Monge

A series of 2-acetyl and 2-benzoyl-6(7)-substituted quinoxaline 1,4-di-N-oxide derivatives were synthesized and evaluated for in vitro antituberculosis activity. The results show that 2-acetyl-3-methylquinoxaline 1,4-di-N-oxide derivatives with chlorine, methyl or methoxy group in position 7 of the benzene moiety (compounds 2, 4 and 6, respectively) and unsubstituted (3) have good antitubercular activity, exhibiting EC(90)/MIC values between 0.80 and 4.29. In conclusion, the potency, selectivity and low cytotoxicity of these compounds make them valid leads for synthesizing new compounds that possess better activity.


Bioorganic & Medicinal Chemistry | 2009

Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates

Nelilma C. Romeiro; Gabriela Aguirre; Paola Hernández; Mercedes González; Hugo Cerecetto; Ignacio Aldana; Silvia Pérez-Silanes; Antonio Monge; Eliezer J. Barreiro; Lidia M. Lima

In this paper, we report the structural design, synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazone (NAH) derivatives, planned as cruzain inhibitors candidates, a cysteine protease essential for the survival of Trypanosoma cruzi within the host cell. The salicylaldehyde N-acylhydrazones 7a and 8a presented IC(50) values of the same magnitude order than the standard drug nifurtimox (Nfx), when tested in vitro against epimastigote forms of Trypanosoma cruzi (Tulahuen 2 strain) and were non-toxic at the highest assayed doses rendering selectivity indexes (IC(50) (macrophages)/IC(50) (Trypanosoma cruzi)) of >25 for 7a and >20 for 8a, with IC(50) values in macrophages >400 microM.


Bioorganic & Medicinal Chemistry | 2010

New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents.

Saioa Ancizu; Elsa Moreno; Beatriz Solano; Raquel Villar; Asunción Burguete; Silvia Pérez-Silanes; Ignacio Aldana; Antonio Monge

Mycobacterium tuberculosis (M.Tb) is a bacillus capable of causing a chronic and fatal condition in humans known as tuberculosis (TB). It is estimated that there are 8 million new cases of TB per year and 3.1 million infected people die annually. Thirty-six new amide quinoxaline 1,4-di-N-oxide derivatives have been synthesized and evaluated as potential anti-tubercular agents, obtaining biological values similar to the reference compound, Rifampin (RIF).


Journal of Medicinal Chemistry | 2011

Novel Benzo[b]thiophene Derivatives as New Potential Antidepressants with Rapid Onset of Action

Luis Berrade; Bárbara Aisa; Maria J. Ramirez; Silvia Galiano; Salvatore Guccione; Lise Román Moltzau; Finn Olav Levy; Ferdinando Nicoletti; Giuseppe Battaglia; Gemma Molinaro; Ignacio Aldana; Antonio Monge; Silvia Pérez-Silanes

We report benzo[b]thiophene derivatives synthesized according to a dual strategy. 8j, 9c, and 9e with affinity values toward 5-HT(7)R and 5-HTT were selected to probe their antidepressant activity in vivo using the forced swimming text (FST). The results showed significant antidepressant activity after chronic treatment. 9c was effective in reducing the immobility time in FST even after acute treatment. These findings identify these compounds as a new class of antidepressants with a rapid onset of action.


Antimicrobial Agents and Chemotherapy | 2008

Efficacy of quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives in experimental tuberculosis.

Esther Vicente; Raquel Villar; Asunción Burguete; Beatriz Solano; Silvia Pérez-Silanes; Ignacio Aldana; Joseph A. Maddry; Anne J. Lenaerts; Scott G. Franzblau; Sang Hyun Cho; Antonio Monge; Robert C. Goldman

ABSTRACT This study extends earlier reports regarding the in vitro efficacies of the 1,4-di-N-oxide quinoxaline derivatives against Mycobacterium tuberculosis and has led to the discovery of a derivative with in vivo efficacy in the mouse model of tuberculosis. Quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives were tested in vitro against a broad panel of single-drug-resistant M. tuberculosis strains. The susceptibilities of these strains to some compounds were comparable to those of strain H37Rv, as indicated by the ratios of MICs for resistant and nonresistant strains, supporting the premise that 1,4-di-N-oxide quinoxaline derivatives have a novel mode of action unrelated to those of the currently used antitubercular drugs. Specific derivatives were further evaluated in a series of in vivo assays, including evaluations of the maximum tolerated doses, the levels of oral bioavailability, and the efficacies in a low-dose aerosol model of tuberculosis in mice. One compound, ethyl 7-chloro-3-methylquinoxaline-2-carboxylate 1,4-dioxide, was found to be (i) active in reducing CFU counts in both the lungs and spleens of infected mice following oral administration, (ii) active against PA-824-resistant Mycobacterium bovis, indicating that the pathway of bioreduction/activation is different from that of PA-824 (a bioreduced nitroimidazole that is in clinical trials), and (iii) very active against nonreplicating bacteria adapted to low-oxygen conditions. These data indicate that 1,4-di-N-oxide quinoxalines hold promise for the treatment of tuberculosis.


Current Medicinal Chemistry | 2008

Melanin-Concentrating Hormone Receptor 1 Antagonists: A New Perspective for the Pharmacologic Treatment of Obesity

Gildardo Rivera; Virgilio Bocanegra-García; Silvia Galiano; Nuria Cirauqui; Javier Ceras; Silvia Pérez; Ignacio Aldana; Antonio Monge

Obesity is a chronic disease characterized by the accumulation of excess adipose tissue associated with an increased risk of multiple morbidities and mortality. At the present time, only three drugs have been approved by the Food and Drug Administration (FDA) for the treatment of obesity. Agonists and antagonists of some of the substances implicated in the regulation of energy homeostasis represent opportunities for anti-obesity drug development. The most promising targets are alpha-melanocyte stimulating hormone (alpha-MSH) receptors, cannabinoid receptors, the 5-hydroxytryptamine (5-HT) receptors and melanin-concentrating hormone (MCH) receptors. MCH receptors could be major potential targets for the treatment of obesity. Many pharmaceutical companies have described MCH-R1 antagonists that have appeared over the past year. Recently, two compounds went into phase I clinical trials that evaluate MCH receptor antagonists as a new perspective for the pharmacologic treatment of obesity. In this review, structure-activity relationships (SAR) in the development of MCH-R1 antagonists are provided.


Bioorganic & Medicinal Chemistry Letters | 2011

New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium tuberculosis agents

Elsa Moreno; Saioa Ancizu; Carlos Barea; Silvia Galiano; Ignacio Aldana; Antonio Monge; Silvia Pérez-Silanes

The increase in the prevalence of drug-resistant tuberculosis cases demonstrates the need of discovering new and promising compounds with antimycobacterial activity. As a continuation of our research and with the aim of identifying new antitubercular drugs candidates, a new series of quinoxaline 1,4-di-N-oxide derivatives containing isoniazid was synthesized and evaluated for in vitro anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv strain. Moreover, various drug-like properties of new compounds were predicted. Taking into account the biological results and the promising drug-likeness profile of these compounds, make them valid leads for further experimental research.


European Journal of Medicinal Chemistry | 2010

Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives

Elsa Moreno; Saioa Ancizu; Silvia Pérez-Silanes; Ignacio Aldana; Antonio Monge

As a continuation of our research and with the aim of obtaining new anti-tuberculosis agents which can improve the current chemotherapeutic anti-tuberculosis treatments, forty-three new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives were synthesized and evaluated for in vitro anti-tuberculosis activity against Mycobacterium tuberculosis strain H(37)Rv. Active compounds were also screened to assess toxicity to a VERO cell line. Results indicate that compounds with a methyl moiety substituted in position 3 and unsubstituted benzyl substituted on the carboxamide group provide an efficient approach for further development of anti-tuberculosis agents.


Chemical Biology & Drug Design | 2011

Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents

Asunción Burguete; Eleni Pontiki; Dimitra Hadjipavlou-Litina; Saioa Ancizu; Raquel Villar; Beatriz Solano; Elsa Moreno; Silvia Pérez; Ignacio Aldana; Antonio Monge

We report the synthesis, anti‐inflammatory, and antioxidant activities of novel quinoxaline and quinoxaline 1,4‐di‐N‐oxide derivatives. Microwave‐assisted methods have been used to optimize reaction times and to improve yields. The tested compounds presented important scavenging activities and promising in vitro inhibition of soybean lipoxygenase (LOX). Two of the best LOX inhibitors (compounds 7b and 8f) were evaluated as in vivo anti‐inflammatory agents using the carrageenin‐induced edema model. One of them (compound 7b) showed important in vivo anti‐inflammatory effect (41%) similar to that of indomethacin (47%) used as the reference drug.


Journal of Antimicrobial Chemotherapy | 2008

In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide

Raquel Villar; Esther Vicente; Beatriz Solano; Silvia Pérez-Silanes; Ignacio Aldana; Joseph A. Maddry; Anne J. Lenaerts; Scott G. Franzblau; Sang Hyun Cho; Antonio Monge; Robert C. Goldman

OBJECTIVES To evaluate a novel series of quinoxaline 1,4-di-N-oxides for in vitro activity against Mycobacterium tuberculosis and for efficacy in a mouse model of tuberculosis (TB). METHODS Ketone and amide derivatives of quinoxaline 1,4-di-N-oxide were evaluated in in vitro and in vivo tests including: (i) activity against M. tuberculosis resistant to currently used antitubercular drugs including multidrug-resistant strains (MDR-TB resistant to isoniazid and rifampicin); (ii) activity against non-replicating persistent (NRP) bacteria; (iii) MBC; (iv) maximum tolerated dose, oral bioavailability and in vivo efficacy in mice; and (v) potential for cross-resistance with another bioreduced drug, PA-824. RESULTS Ten compounds were tested on single drug-resistant M. tuberculosis. In general, all compounds were active with ratios of MICs against resistant and non-resistant strains of <or=4.00. One compound, 5, was orally active in a murine model of TB, bactericidal, active against NRP bacteria and active on MDR-TB and poly drug-resistant clinical isolates (resistant to 3-5 antitubercular drugs). CONCLUSIONS Quinoxaline 1,4-di-N-oxides represent a new class of orally active antitubercular drugs. They are likely bioreduced to an active metabolite, but the pathway of bacterial activation was different from PA-824, a bioreducible nitroimidazole in clinical trials. Compound 5 was bactericidal and active on NRP organisms indicating that activation occurred in both growing and non-replicating bacteria leading to cell death. The presence of NRP bacteria is believed to be a major factor responsible for the prolonged nature of antitubercular therapy. If the bactericidal activity and activity on non-replicating bacteria in vitro translate to in vivo conditions, quinoxaline 1,4-di-N-oxides may offer a path to shortened therapy.

Collaboration


Dive into the Ignacio Aldana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Deharo

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Quiliano

Cayetano Heredia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge