Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignacio del Castillo is active.

Publication


Featured researches published by Ignacio del Castillo.


Nature Genetics | 2009

Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss

Ángeles Mencía; Silvia Modamio-Høybjør; Nick Redshaw; Matías Morín; Fernando Mayo-Merino; Leticia Olavarrieta; Luis A. Aguirre; Ignacio del Castillo; Karen P. Steel; Tamas Dalmay; Felipe Moreno; Miguel A. Moreno-Pelayo

MicroRNAs (miRNAs) bind to complementary sites in their target mRNAs to mediate post-transcriptional repression, with the specificity of target recognition being crucially dependent on the miRNA seed region. Impaired miRNA target binding resulting from SNPs within mRNA target sites has been shown to lead to pathologies associated with dysregulated gene expression. However, no pathogenic mutations within the mature sequence of a miRNA have been reported so far. Here we show that point mutations in the seed region of miR-96, a miRNA expressed in hair cells of the inner ear, result in autosomal dominant, progressive hearing loss. This is the first study implicating a miRNA in a mendelian disorder. The identified mutations have a strong impact on miR-96 biogenesis and result in a significant reduction of mRNA targeting. We propose that these mutations alter the regulatory role of miR-96 in maintaining gene expression profiles in hair cells required for their normal function.


American Journal of Human Genetics | 2005

GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study

Rikkert L. Snoeckx; P.L.M. Huygen; Delphine Feldmann; Sandrine Marlin; Françoise Denoyelle; Jaroslaw Waligora; Malgorzata Mueller-Malesinska; Agneszka Pollak; Rafał Płoski; Alessandra Murgia; Eva Orzan; Pierangela Castorina; Umberto Ambrosetti; Ewa Nowakowska-Szyrwinska; Jerzy Bal; Wojciech Wiszniewski; Andreas R. Janecke; Doris Nekahm-Heis; Pavel Seeman; O. Bendová; Margaret A. Kenna; Anna Frangulov; Heidi L. Rehm; Mustafa Tekin; Armagan Incesulu; Hans Henrik M Dahl; Desirée du Sart; Lucy Jenkins; Deirdre Lucas; Maria Bitner-Glindzicz

Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.


American Journal of Human Genetics | 2003

Prevalence and Evolutionary Origins of the del(GJB6-D13S1830) Mutation in the DFNB1 Locus in Hearing-Impaired Subjects: A Multicenter Study

Ignacio del Castillo; Miguel A. Moreno-Pelayo; Francisco Castillo; Zippora Brownstein; Sandrine Marlin; Quint Adina; David J. Cockburn; Arti Pandya; Kirby Siemering; G. Parker Chamberlin; Ester Ballana; Wim Wuyts; Andréa Trevas Maciel-Guerra; Araceli Álvarez; Manuela Villamar; Mordechai Shohat; Dvorah Abeliovich; Hans-Henrik M. Dahl; Xavier Estivill; Paolo Gasparini; Tim P. Hutchin; Walter E. Nance; Edi Lúcia Sartorato; Richard J.H. Smith; Guy Van Camp; Karen B. Avraham; Christine Petit; Felipe Moreno

Mutations in GJB2, the gene encoding connexin-26 at the DFNB1 locus on 13q12, are found in as many as 50% of subjects with autosomal recessive, nonsyndromic prelingual hearing impairment. However, genetic diagnosis is complicated by the fact that 10%-50% of affected subjects with GJB2 mutations carry only one mutant allele. Recently, a deletion truncating the GJB6 gene (encoding connexin-30), near GJB2 on 13q12, was shown to be the accompanying mutation in approximately 50% of these deaf GJB2 heterozygotes in a cohort of Spanish patients, thus becoming second only to 35delG at GJB2 as the most frequent mutation causing prelingual hearing impairment in Spain. Here, we present data from a multicenter study in nine countries that shows that the deletion is present in most of the screened populations, with higher frequencies in France, Spain, and Israel, where the percentages of unexplained GJB2 heterozygotes fell to 16.0%-20.9% after screening for the del(GJB6-D13S1830) mutation. Our results also suggest that additional mutations remain to be identified, either in DFNB1 or in other unlinked genes involved in epistatic interactions with GJB2. Analysis of haplotypes associated with the deletion revealed a founder effect in Ashkenazi Jews and also suggested a common founder for countries in Western Europe. These results have important implications for the diagnosis and counseling of families with DFNB1 deafness.


American Journal of Human Genetics | 2006

Mutation in TRMU Related to Transfer RNA Modification Modulates the Phenotypic Expression of the Deafness-Associated Mitochondrial 12S Ribosomal RNA Mutations

Min-Xin Guan; Qingfeng Yan; Xiaoming Li; Yelena Bykhovskaya; J. Gallo-Terán; Petr Hájek; Noriko Umeda; Hui Zhao; Gema Garrido; Emebet Mengesha; Tsutomu Suzuki; Ignacio del Castillo; Jennifer L. Peters; Ronghua Li; Yaping Qian; Xinjian Wang; Ester Ballana; Mordechai Shohat; Jianxin Lu; Xavier Estivill; Kimitsuna Watanabe; Nathan Fischel-Ghodsian

The human mitochondrial 12S ribosomal RNA (rRNA) A1555G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the A1555G mutation is a primary factor underlying the development of deafness but is not sufficient to produce a deafness phenotype. However, it has been proposed that nuclear-modifier genes modulate the phenotypic manifestation of the A1555G mutation. Here, we identified the nuclear-modifier gene TRMU, which encodes a highly conserved mitochondrial protein related to transfer RNA (tRNA) modification. Genotyping analysis of TRMU in 613 subjects from 1 Arab-Israeli kindred, 210 European (Italian pedigrees and Spanish pedigrees) families, and 31 Chinese pedigrees carrying the A1555G or the C1494T mutation revealed a missense mutation (G28T) altering an invariant amino acid residue (A10S) in the evolutionarily conserved N-terminal region of the TRMU protein. Interestingly, all 18 Arab-Israeli/Italian-Spanish matrilineal relatives carrying both the TRMU A10S and 12S rRNA A1555G mutations exhibited prelingual profound deafness. Functional analysis showed that this mutation did not affect importation of TRMU precursors into mitochondria. However, the homozygous A10S mutation leads to a marked failure in mitochondrial tRNA metabolisms, specifically reducing the steady-state levels of mitochondrial tRNA. As a consequence, these defects contribute to the impairment of mitochondrial-protein synthesis. Resultant biochemical defects aggravate the mitochondrial dysfunction associated with the A1555G mutation, exceeding the threshold for expressing the deafness phenotype. These findings indicate that the mutated TRMU, acting as a modifier factor, modulates the phenotypic manifestation of the deafness-associated 12S rRNA mutations.


Nature Genetics | 2001

Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus.

Elisabeth Verpy; Saber Masmoudi; Ingrid Zwaenepoel; Michel Leibovici; Tim P. Hutchin; Ignacio del Castillo; Sylvie Nouaille; Stéphane Blanchard; Sophie Lainé; Jean-Luc Popot; Felipe Moreno; Robert F. Mueller; Christine Petit

Hearing impairment affects about 1 in 1,000 children at birth. Approximately 70 loci implicated in non-syndromic forms of deafness have been reported in humans and 24 causative genes have been identified (see also http://www.uia.ac.be/dnalab/hhh). We report a mouse transcript, isolated by a candidate deafness gene approach, that is expressed almost exclusively in the inner ear. Genomic analysis shows that the human ortholog STRC (so called owing to the name we have given its protein—stereocilin), which is located on chromosome 15q15, contains 29 exons encompassing approximately 19 kb. STRC is tandemly duplicated, with the coding sequence of the second copy interrupted by a stop codon in exon 20. We have identified two frameshift mutations and a large deletion in the copy containing 29 coding exons in two families affected by autosomal recessive non-syndromal sensorineural deafness linked to the DFNB16 locus. Stereocilin is made up of 1,809 amino acids, and contains a putative signal petide and several hydrophobic segments. Using immunohistolabeling, we demonstrate that, in the mouse inner ear, stereocilin is expressed only in the sensory hair cells and is associated with the stereocilia, the stiff microvilli forming the structure for mechanoreception of sound stimulation.


American Journal of Human Genetics | 1999

The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

Antonio Torroni; Fulvio Cruciani; Chiara Rengo; Daniele Sellitto; Nuria Lopez-Bigas; Raquel Rabionet; Nancy Govea; Adolfo López de Munain; Maritza Sarduy; Lourdes Romero; Manuela Villamar; Ignacio del Castillo; Felipe Moreno; Xavier Estivill; Rosaria Scozzari

The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to >/=30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments.


Human Mutation | 2008

A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing impairment and auditory neuropathy

Montserrat Rodríguez-Ballesteros; Rául A Reynoso; Margarita Olarte; Manuela Villamar; Constantino Morera; Rosamaria Santarelli; Edoardo Arslan; Carme Medá; Carlos Curet; Christiane Völter; Manuel Sainz-Quevedo; Pierangela Castorina; Umberto Ambrosetti; Stefano Berrettini; Klemens Frei; Socorro Tedín; Janine Smith; M. Cruz Tapia; Laura Cavallé; Nancy Gelvez; Paola Primignani; Elena Gómez-Rosas; Mirta Martín; Miguel A. Moreno-Pelayo; Martalucía Tamayo; José Moreno-Barral; Felipe Moreno; Ignacio del Castillo

Autosomal recessive nonsyndromic hearing impairment (NSHI) is a heterogeneous condition, for which 53 genetic loci have been reported, and 29 genes have been identified to date. One of these, OTOF, encodes otoferlin, a membrane‐anchored calcium‐binding protein that plays a role in the exocytosis of synaptic vesicles at the auditory inner hair cell ribbon synapse. We have investigated the prevalence and spectrum of deafness‐causing mutations in the OTOF gene. Cohorts of 708 Spanish, 83 Colombian, and 30 Argentinean unrelated subjects with autosomal recessive NSHI were screened for the common p.Gln829X mutation. In compound heterozygotes, the second mutant allele was identified by DNA sequencing. In total, 23 Spanish, two Colombian and two Argentinean subjects were shown to carry two mutant alleles of OTOF. Of these, one Colombian and 13 Spanish subjects presented with auditory neuropathy. In addition, a cohort of 20 unrelated subjects with a diagnosis of auditory neuropathy, from several countries, was screened for mutations in OTOF by DNA sequencing. A total of 11 of these subjects were shown to carry two mutant alleles of OTOF. In total, 18 pathogenic and four neutral novel alleles of the OTOF gene were identified. Haplotype analysis for markers close to OTOF suggests a common founder for the novel c.2905_2923delinsCTCCGAGCGCA mutation, frequently found in Argentina. Our results confirm that mutation of the OTOF gene correlates with a phenotype of prelingual, profound NSHI, and indicate that OTOF mutations are a major cause of inherited auditory neuropathy. Hum Mutat 29(6), 823–831, 2008.


Molecular Microbiology | 1997

The Escherichia coli K‐12 sheA gene encodes a 34‐kDa secreted haemolysin

Francisco Castillo; Sandra C. Leal; Felipe Moreno; Ignacio del Castillo

Haemolytic toxins belong to one of several classes of virulence factors that contribute to bacterial pathogenicity. The non‐pathogenic Escherichia coli K‐12 laboratory strain was considered for years to be non‐haemolytic. However, overproduction of several transcriptional regulators induced the appearance of a haemolytic activity that is absent under usual laboratory growth conditions. In this work, we have cloned and characterized an E. coli K‐12 gene, sheA, whose overexpression results in a haemolytic phenotype. It maps to min 27 on the genetic map, and codes for a 34‐kDa polypeptide with at least one putative transmembrane segment. This polypeptide, which has neither signal peptide nor other known secretory motifs, is secreted to the medium during the exponential growth phase. In vitro coupled transcription/translation assays, using a plasmid carrying only the sheA gene as template, resulted in the production of a polypeptide with haemolytic activity per se. Our results demonstrate that the sheA gene actually encodes the E. coli K‐12 chromosomal haemolysin. The SheA haemolysin does not resemble other known cytolytic toxins, and it may represent the prototype of a novel family, as suggested by the presence of homologues in several E. coli pathogenic strains and in Shigella flexneri.


American Journal of Medical Genetics Part A | 2005

High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in spanish romani (gypsies) with autosomal recessive non-syndromic hearing loss

Araceli Álvarez; Ignacio del Castillo; Manuela Villamar; Luis A. Aguirre; Anna González-Neira; Alicia López-Nevot; Miguel A. Moreno-Pelayo; Felipe Moreno

Molecular testing for mutations in the gene encoding connexin‐26 (GJB2) at the DFNB1 locus has become the standard of care for genetic diagnosis and counseling of autosomal recessive non‐syndromic hearing impairment (ARNSHI). The spectrum of mutations in GJB2 varies considerably among the populations, different alleles predominating in different ethnic groups. A cohort of 34 families of Spanish Romani (gypsies) with ARNSHI was screened for mutations in GJB2. We found that DFNB1 deafness accounts for 50% of all ARNSHI in Spanish gypsies. The predominating allele is W24X (79% of the DFNB1 alleles), and 35delG is the second most common allele (17%). An allele‐specific PCR test was developed for the detection of the W24X mutation. By using this test, carrier frequencies were determined in two sample groups of gypsies from different Spanish regions (Andalusia and Catalonia), being 4% and 0%, respectively. Haplotype analysis for microsatellite markers closely flanking the GJB2 gene revealed five different haplotypes associated with the W24X mutation, all sharing the same allele from marker D13S141, suggesting that a founder effect for this mutation is responsible for its high prevalence among Spanish gypsies.


American Journal of Human Genetics | 2011

Nonsense Mutations in SMPX, Encoding a Protein Responsive to Physical Force, Result in X-Chromosomal Hearing Loss

Antje K. Huebner; Marta Gandía; Peter Frommolt; Anika Maak; Eva M. Wicklein; Holger Thiele; Janine Altmüller; Florian Wagner; Antonio Viñuela; Luis A. Aguirre; Felipe Moreno; Hannes Maier; Isabella Rau; Sebastian Gießelmann; Gudrun Nürnberg; Andreas Gal; Peter Nürnberg; Christian A. Hübner; Ignacio del Castillo; Ingo Kurth

The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function.

Collaboration


Dive into the Ignacio del Castillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge