Ignacio Gimenez
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ignacio Gimenez.
Journal of Biological Chemistry | 2006
Diana Pacheco-Alvarez; Pedro San Cristobal; Patricia Meade; Erika Moreno; Norma Vázquez; Eva M. Muñoz; Abigail Díaz; María Eugenia Juárez; Ignacio Gimenez; Gerardo Gamba
The renal Na+:Cl– cotransporter rNCC is mutated in human disease, is the therapeutic target of thiazide-type diuretics, and is clearly involved in arterial blood pressure regulation. rNCC belongs to an electroneutral cation-coupled chloride cotransporter family (SLC12A) that has two major branches with inverse physiological functions and regulation: sodium-driven cotransporters (NCC and NKCC1/2) that mediate cellular Cl– influx are activated by phosphorylation, whereas potassium-driven cotransporters (KCCs) that mediate cellular Cl– efflux are activated by dephosphorylation. A cluster of three threonine residues at the amino-terminal domain has been implicated in the regulation of NKCC1/2 by intracellular chloride, cell volume, vasopressin, and WNK/STE-20 kinases. Nothing is known, however, about rNCC regulatory mechanisms. By using rNCC heterologous expression in Xenopus laevis oocytes, here we show that two independent intracellular chloride-depleting strategies increased rNCC activity by 3-fold. The effect of both strategies was synergistic and dose-dependent. Confocal microscopy of enhanced green fluorescent protein-tagged rNCC showed no changes in rNCC cell surface expression, whereas immunoblot analysis, using the R5-anti-NKCC1-phosphoantibody, revealed increased phosphorylation of rNCC amino-terminal domain threonine residues Thr53 and Thr58. Elimination of these threonines together with serine residue Ser71 completely prevented rNCC response to intracellular chloride depletion. We conclude that rNCC is activated by a mechanism that involves amino-terminal domain phosphorylation.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Kristopher T. Kahle; Ignacio Gimenez; Hatim Hassan; Frederick H. Wilson; Robert D. Wong; Biff Forbush; Peter S. Aronson; Richard P. Lifton
Mutations in the serine-threonine kinase WNK4 [with no lysine (K) 4] cause pseudohypoaldosteronism type II, a Mendelian disease featuring hypertension with hyperkalemia. In the kidney, WNK4 regulates the balance between NaCl reabsorption and K+ secretion via variable inhibition of the thiazide-sensistive NaCl cotransporter and the K+ channel ROMK. We now demonstrate expression of WNK4 mRNA and protein outside the kidney. In extrarenal tissues, WNK4 is found almost exclusively in polarized epithelia, variably associating with tight junctions, lateral membranes, and cytoplasm. Epithelia expressing WNK4 include sweat ducts, colonic crypts, pancreatic ducts, bile ducts, and epididymis. WNK4 is also expressed in the specialized endothelium of the blood–brain barrier. These epithelia and endothelium all play important roles in Cl– transport. Because WNK4 is known to regulate renal Cl– handling, we tested WNK4s effect on the activity of mediators of epithelial Cl– flux whose extrarenal expression overlaps with WNK4. WNK4 proved to be a potent inhibitor of the activity of both the Na+-K+-2Cl– cotransporter (NKCC1) and the Cl–/base exchanger SLC26A6 (CFEX) (>95% inhibition of NKCC1-mediated 86Rb influx, P < 0.001; >80% inhibition of CFEX-mediated [14C] formate uptake, P < 0.001), mediators of Cl– flux across basolateral and apical membranes, respectively. In contrast, WNK4 showed no inhibition of pendrin, a related Cl–/base exchanger. These findings indicate a general role for WNK4 in the regulation of electrolyte flux in diverse epithelia. Moreover, they reveal that WNK4 regulates the activities of a diverse group of structurally unrelated ion channels, cotransporters, and exchangers.
Journal of Biological Chemistry | 2002
Andreas Flemmer; Ignacio Gimenez; Brian F. X. Dowd; Rachel B. Darman; Biff Forbush
The Na-K-Cl cotransporter NKCC1 is activated by phosphorylation of a regulatory domain in its N terminus. In the accompanying paper (Darman, R. B., and Forbush, B. (2002)J. Biol. Chem. 277, 37542–37550), we identify three phosphothreonines important in this process. Using a phospho-specific antibody (anti-phospho-NKCC1 antibody R5) raised against a diphosphopeptide containing Thr212 and Thr217of human NKCC, we were readily able to monitor the cotransporter activation state. In 32P phosphorylation experiments with rectal gland tubules, we show that the R5 antibody signal is proportional to the amount of 32P incorporated into NKCC1; and in experiments with NKCC1-transfected HEK-293 cells, we demonstrate that R5-detected phosphorylation directly mirrors functional activation. Immunofluorescence analysis of shark rectal gland shows activation-dependent R5 antibody staining along the basolateral membrane. In perfused rat parotid glands, isoproterenol induced staining of both acinar and ductal cells along the basolateral membrane. Isoproterenol also induced basolateral staining of the epithelial cells in rat trachea, whereas basal cells in the subepithelial tissue displayed heavy, non-polarized staining of the cell membrane. In rat colon, agonist stimulation induced staining along the basolateral membrane of crypt cells. These data provide direct evidence of NKCC1 regulation in these tissues, and they further link phosphorylation of NKCC1 with its activation in transfected cells and native tissue. The high conservation of the regulatory threonine residues among NKCC1, NKCC2, and NCC family members, together with the fact that tissues from divergent vertebrate species exhibit similar R5-binding profiles, lends further support to the role of this regulatory locus in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2008
José Ponce-Coria; Pedro San-Cristobal; Kristopher T. Kahle; Norma Vázquez; Diana Pacheco-Alvarez; Paola de los Heros; Patricia Juárez; Eva Muñoz; Gabriela Michel; Norma A. Bobadilla; Ignacio Gimenez; Richard P. Lifton; Steven C. Hebert; Gerardo Gamba
The Na+:K+:2Cl− cotransporter (NKCC2) is the target of loop diuretics and is mutated in Bartters syndrome, a heterogeneous autosomal recessive disease that impairs salt reabsorption in the kidneys thick ascending limb (TAL). Despite the importance of this cation/chloride cotransporter (CCC), the mechanisms that underlie its regulation are largely unknown. Here, we show that intracellular chloride depletion in Xenopus laevis oocytes, achieved by either coexpression of the K-Cl cotransporter KCC2 or low-chloride hypotonic stress, activates NKCC2 by promoting the phosphorylation of three highly conserved threonines (96, 101, and 111) in the amino terminus. Elimination of these residues renders NKCC2 unresponsive to reductions of [Cl−]i. The chloride-sensitive activation of NKCC2 requires the interaction of two serine-threonine kinases, WNK3 (related to WNK1 and WNK4, genes mutated in a Mendelian form of hypertension) and SPAK (a Ste20-type kinase known to interact with and phosphorylate other CCCs). WNK3 is positioned upstream of SPAK and appears to be the chloride-sensitive kinase. Elimination of WNK3s unique SPAK-binding motif prevents its activation of NKCC2, as does the mutation of threonines 96, 101, and 111. A catalytically inactive WNK3 mutant also completely prevents NKCC2 activation by intracellular chloride depletion. Together these data reveal a chloride-sensing mechanism that regulates NKCC2 and provide insight into how increases in the level of intracellular chloride in TAL cells, as seen in certain pathological states, could drastically impair renal salt reabsorption.
Journal of Biological Chemistry | 2007
Ignacio Gimenez; Biff Forbush
Three alternatively spliced variants of the renal Na-K-Cl cotransporter (NKCC2) are found in distinct regions of the thick ascending limb of the mammalian kidney; these variants mediate Na+K+2Cl- transport with different ion affinities. Here, we examine the specific residues involved in the variant-specific affinity differences, utilizing a mutagenic approach to change the NKCC2B variant into the A or F variant, with functional expression in Xenopus oocytes. The splice region contains the second transmembrane domain (TM2) and the putative intracellular loop (ICL1) connecting TM2 and TM3. It is found that the B variant is functionally changed to the F variant by replacement of six residues, half of the effect brought about by three TM2 residues and half by three ICL1 residues. The involvement of the ICL1 residues strongly suggests that this region of ICL1 may actually be part of a membrane-embedded domain. Changing six residues is also sufficient to bring about the smaller functional change from the B to the A variant; three residues in TM2 appear to be primarily responsible, two of which correspond to residues involved in the B-to-F changes. A B-variant mutation reported in a mild case of Bartter disease was found to render the cotransporter inactive. These results identify the combination of amino acid variations responsible for the differences among the three splice variants of NKCC2, and they support a model in which a reentrant loop following TM2 contributes to the chloride binding and translocation domains.
The Journal of Experimental Biology | 2010
Andreas Flemmer; Michelle Y. Monette; Maja Djurisic; Brian F. X. Dowd; Rachel B. Darman; Ignacio Gimenez; Biff Forbush
SUMMARY Euryhaline teleosts such as Atlantic killifish (Fundulus heteroclitus) are able to acclimate to changing environmental salinity by tightly regulating NaCl absorption and secretion across their gills. Many studies have examined the mechanisms responsible for long-term (days) salinity acclimation; however, much remains unknown about the mechanisms of acute (hours) salinity acclimation. In this study, we tested the hypotheses that phosphorylation of the Na+–K+–Cl− cotransporter (NKCC1) located in the basolateral membrane of the gill plays a role in acute salinity acclimation and that changes in NKCC1 phosphorylation are mediated by a cAMP–protein kinase A (cAMP–PKA) pathway. Using a phospho-specific antibody, we determined the time course of changes in total and phosphorylated NKCC1 protein during acclimation to water of various salinities. Long-term (≥14 days) acclimation of killifish to seawater (SW) and 2× SW resulted in 4- to 6-fold and 5- to 8-fold increases, respectively, in total gill NKCC1 protein relative to fish maintained in freshwater (FW). NKCC1 was found to be between 20% and 70% activated in fish, with lower average activation in fish acclimated to SW and 2× SW compared with FW fish. Increases and decreases in the fractional level of NKCC1 phosphorylation were seen within 1 h of transfer of fish to water of higher and lower salinity, respectively, consistent with a regulatory role of phosphorylation prior to an increase in the biosynthesis of NKCC1; large changes in protein expression of NKCC1 were observed over periods of hours to days. We found that NKCC1 phosphorylation is acutely regulated in the killifish gill in response to changing environmental salinity and that phosphorylation in excised gills increases in response to forskolin stimulation of the cAMP–PKA pathway. The role of phosphorylation is further underscored by the observation that mRNA expression of sterile 20 (Ste20)-related proline–alanine-rich kinase (SPAK) changes with salinity acclimation, being 2.7-fold greater in SW-acclimated killifish relative to FW fish. Overall, these results demonstrate an important role of NKCC1 phosphorylation in the gill of Atlantic killifish during acute salinity acclimation.
Journal of Biological Chemistry | 2003
Ignacio Gimenez; Biff Forbush
Proceedings of the National Academy of Sciences of the United States of America | 2005
Kristopher T. Kahle; Jesse Rinehart; Paola de los Heros; Angeliki Louvi; Patricia Meade; Norma Vázquez; Steven C. Hebert; Gerardo Gamba; Ignacio Gimenez; Richard P. Lifton
Proceedings of the National Academy of Sciences of the United States of America | 2005
Jesse Rinehart; Kristopher T. Kahle; Paola de los Heros; Norma Vázquez; Patricia Meade; Frederick H. Wilson; Steven C. Hebert; Ignacio Gimenez; Gerardo Gamba; Richard P. Lifton
Physiology | 2006
Kristopher T. Kahle; Jesse Rinehart; Aaron M. Ring; Ignacio Gimenez; Gerardo Gamba; Steven C. Hebert; Richard P. Lifton