Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignacio Mendez-Balbuena is active.

Publication


Featured researches published by Ignacio Mendez-Balbuena.


Frontiers in Aging Neuroscience | 2011

Impact of a Weekly Dance Class on the Functional Mobility and on the Quality of Life of Individuals with Parkinson’s Disease

Lisa Heiberger; Christoph Maurer; Florian Amtage; Ignacio Mendez-Balbuena; Jürgen Schulte-Mönting; Marie-Claude Hepp-Reymond; Rumyana Kristeva

Individuals with Parkinson’s disease (PD) mainly suffer from motor impairments which increase the risk of falls and lead to a decline of quality of life. Several studies investigated the long-term effect of dance for people with PD. The aims of the present study were to investigate (i) the short-term effects of dance (i.e., the effect immediately after the dance class) on motor control in individuals with PD and (ii) the long-term effects of 8 months of participation in the weekly dance class on the quality of life of the PD patients and their caregivers. The dance lessons took place in a ballet studio and were led by a professional dancer. Eleven people with moderate to severe PD (58–85 years old) were subjected to a motor and quality of life assessments. With respect to the motor assessments the unified Parkinson disease rating scale III (UPDRS III), the timed up and go test (TUG), and the Semitandem test (SeTa) before and after the dance class were used. With respect to the quality of life and well-being we applied quality of life scale (QOLS) as well as the Westheimer questionnaire. Additionally, we asked the caregivers to fill out the Questionnaire for caregivers. We found a significant beneficial short-term effect for the total score of the UPDRS motor score. The strongest improvements were in rigidity scores followed by significant improvements in hand movements, finger taps, and facial expression. No significant changes were found for TUG and for SeTa. The results of the questionnaires showed positive effects of the dance class on social life, health, body-feeling and mobility, and on everyday life competences of the PD patients. Beneficial effect was also found for the caregivers. The findings demonstrate that dance has beneficial effect on the functional mobility of individuals with PD. Further, dance improves the quality of life of the patients and their caregivers. Dance may lead to better therapeutic strategies as it is engaging and enjoyable.


The Journal of Neuroscience | 2012

Improved Sensorimotor Performance via Stochastic Resonance

Ignacio Mendez-Balbuena; Elias Manjarrez; Jürgen Schulte-Mönting; Frank Huethe; Jesus A. Tapia; Marie-Claude Hepp-Reymond; Rumyana Kristeva

Several studies about noise-enhanced balance control in humans support the hypothesis that stochastic resonance can enhance the detection and transmission in sensorimotor system during a motor task. The purpose of the present study was to extend these findings in a simpler and controlled task. We explored whether a particular level of a mechanical Gaussian noise (0–15 Hz) applied on the index finger can improve the performance during compensation for a static force generated by a manipulandum. The finger position was displayed on a monitor as a small white point in the center of a gray circle. We considered a good performance when the subjects exhibited a low deviation from the center of this circle and when the performance had less variation over time. Several levels of mechanical noise were applied on the manipulandum. We compared the performance between zero noise (ZN), optimal noise (ON), and high noise (HN). In all subjects (8 of 8) the data disclosed an inverted U-like graph between the inverse of the mean variation in position and the input noise level. In other words, the mean variation was significantly smaller during ON than during ZN or HN. The findings suggest that the application of a tactile-proprioceptive noise can improve the stability in sensorimotor performance via stochastic resonance. Possible explanations for this improvement in motor precision are an increase of the peripheral receptors sensitivity and of the internal stochastic resonance, causing a better sensorimotor integration and an increase in corticomuscular synchronization.


The Journal of Neuroscience | 2011

Corticospinal Beta-Range Coherence Is Highly Dependent on the Pre-stationary Motor State

Wolfgang Omlor; Luis Patino; Ignacio Mendez-Balbuena; Jürgen Schulte-Mönting; Rumyana Kristeva

During steady muscle contractions, the human sensorimotor cortex generates oscillations in the beta-frequency range (15–30 Hz) that are coherent with the activity of contralateral spinal motoneurons. This corticospinal coherence is thought to favor stationary motor states, but its mode of operation remains elusive. We hypothesized that corticospinal beta-range coherence depends on the sensorimotor processing state before a steady force task and may thus increase after sensorimotor tuning to dynamic force generation. To test this hypothesis we instructed 16 human subjects to compensate static force after rest as well as after compensating predictable or unpredictable dynamic force with their right index finger. We calculated EEG-EMG coherence, cortical motor spectral power, and the motor performance during the force conditions. Corticospinal beta-coherence during stationary force was excessively elevated if the steady-state contraction was preceded by predictable dynamic force instead of rest, and was highest after unpredictable dynamic force. The beta-power decreased from rest to predictable dynamic force, and was lowest during unpredictable dynamic force. The increase in corticospinal beta-coherence showed a significant negative correlation with the preceding change in beta-power. The tuning to dynamic force did not entail an inferior motor performance during static force. The results imply a correlation between corticospinal beta-range coherence and the computational load of the preceding isometric motor engagement. We suggest beta-range coherence provides a functional corticospinal gateway for steady force-related processing that can override cortical states tuned to dynamic force. The modulation of corticospinal beta-range coherence might thus ensure comparable precision of static force in various motor contexts.


Journal of Neurophysiology | 2015

Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance

Ignacio Mendez-Balbuena; Nayeli Huidobro; Mayte Silva; Amira Flores; Carlos Trenado; Luis Quintanar; Oscar Arias-Carrión; Rumyana Kristeva; Elias Manjarrez

The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP.


Frontiers in Human Neuroscience | 2014

Broad-band Gaussian noise is most effective in improving motor performance and is most pleasant

Carlos Trenado; Areh Mikulić; Elias Manjarrez; Ignacio Mendez-Balbuena; Jürgen Schulte-Mönting; Frank Huethe; Marie-Claude Hepp-Reymond; Rumyana Kristeva

Modern attempts to improve human performance focus on stochastic resonance (SR). SR is a phenomenon in non-linear systems characterized by a response increase of the system induced by a particular level of input noise. Recently, we reported that an optimum level of 0–15 Hz Gaussian noise applied to the human index finger improved static isometric force compensation. A possible explanation was a better sensorimotor integration caused by increase in sensitivity of peripheral receptors and/or of internal SR. The present study in 10 subjects compares SR effects in the performance of the same motor task and on pleasantness, by applying three Gaussian noises chosen on the sensitivity of the fingertip receptors (0–15 Hz mostly for Merkel receptors, 250–300 Hz for Pacini corpuscles and 0–300 Hz for all). We document that only the 0–300 Hz noise induced SR effect during the transitory phase of the task. In contrast, the motor performance was improved during the stationary phase for all three noise frequency bandwidths. This improvement was stronger for 0–300 Hz and 250–300 Hz than for 0–15 Hz noise. Further, we found higher degree of pleasantness for 0–300 Hz and 250–300 Hz noise bandwidths than for 0–15 Hz. Thus, we show that the most appropriate Gaussian noise that could be used in haptic gloves is the 0–300 Hz, as it improved motor performance during both stationary and transitory phases. In addition, this noise had the highest degree of pleasantness and thus reveals that the glabrous skin can also forward pleasant sensations.


PLOS ONE | 2014

Suppression of enhanced physiological tremor via stochastic noise: initial observations.

Carlos Trenado; Florian Amtage; Frank Huethe; Jürgen Schulte-Mönting; Ignacio Mendez-Balbuena; Stuart N. Baker; Mark R. Baker; Marie-Claude Hepp-Reymond; Elias Manjarrez; Rumyana Kristeva

Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance. Eight subjects with enhanced physiological tremor performed a visuomotor task requiring the right index finger to compensate a static force generated by a manipulandum to which Gaussian noise (3–35 Hz) was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a larger green circle. Electromyogram (EMG) from the active hand muscles and finger position were recorded. Performance was measured by the mean absolute deviation of the white dot from the zero position. Tremor was identified by the acceleration in the frequency range 7–12 Hz. Two different conditions were compared: with and without superimposed noise at optimal amplitude (determined at the beginning of the experiment). The application of optimum noise reduced tremor (accelerometric amplitude and EMG activity) and improved the motor performance (reduced mean absolute deviation from zero). These data provide the first evidence of a significant reduction of enhanced physiological tremor in the human sensorimotor system due to application of external stochastic noise.


Frontiers in Human Neuroscience | 2014

Enhanced corticomuscular coherence by external stochastic noise

Carlos Trenado; Ignacio Mendez-Balbuena; Elias Manjarrez; Frank Huethe; Jürgen Schulte-Mönting; Bernd Feige; Marie-Claude Hepp-Reymond; Rumyana Kristeva

Noise can have beneficial effects as shown by the stochastic resonance (SR) phenomenon which is characterized by performance improvement when an optimal noise is added. Modern attempts to improve human performance utilize this phenomenon. The purpose of the present study was to investigate whether performance improvement by addition of optimum noise (ON) is related to increased cortical motor spectral power (SP) and increased corticomuscular coherence. Eight subjects performed a visuomotor task requiring to compensate with the right index finger a static force (SF) generated by a manipulandum on which Gaussian noise was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a green bigger circle. Electroencephalogram from the contralateral motor area, electromyogram from active muscles and finger position were recorded. The performance was measured by the mean absolute deviation (MAD) of the white dot from the zero position. ON compared to the zero noise condition induced an improvement in motor accuracy together with an enhancement of cortical motor SP and corticomuscular coherence in beta-range. These data suggest that the improved sensorimotor performance via SR is consistent with an increase in the cortical motor SP and in the corticomuscular coherence.


Journal of Neurophysiology | 2013

The strength of the corticospinal coherence depends on the predictability of modulated isometric forces

Ignacio Mendez-Balbuena; José Raúl Naranjo; Xi Wang; Agnieska Andrykiewicz; Frank Huethe; Jürgen Schulte-Mönting; Marie-Claude Hepp-Reymond; Rumyana Kristeva

Isometric compensation of predictably frequency-modulated low forces is associated with corticomuscular coherence (CMC) in beta and low gamma range. It remains unclear how the CMC is influenced by unpredictably modulated forces, which create a mismatch between expected and actual sensory feedback. We recorded electroencephalography from the contralateral hand motor area, electromyography (EMG), and the motor performance of 16 subjects during a visuomotor task in which they had to isometrically compensate target forces at 8% of the maximum voluntary contraction with their right index finger. The modulated forces were presented with predictable or unpredictable frequencies. We calculated the CMC, the cortical motor alpha-, beta-, and gamma-range spectral powers (SP), and the task-related desynchronization (TRD), as well as the EMG SP and the performance. We found that in the unpredictable condition the CMC was significantly lower and associated with lower cortical motor SP, stronger TRD, higher EMG SP, and worse performance. The findings suggest that due to the mismatch between predicted and actual sensory feedback leading to higher computational load and less stationary motor state, the unpredictable modulation of the force leads to a decrease in corticospinal synchrony, an increase in cortical and muscle activation, and a worse performance.


Frontiers in Neuroscience | 2017

Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials

Nayeli Huidobro; Abraham Mendez-Fernandez; Ignacio Mendez-Balbuena; Ranier Gutierrez; Rumyana Kristeva; Elias Manjarrez

Stochastic resonance (SR) is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR) facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2) can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP), we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP). In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP) exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS) on the scalp.


International Journal of Developmental Neuroscience | 2015

Firing properties of auditory primary afferents from the basilar papilla in the chick.

Salvador Galicia; Celso Cortes; Jorge Cebada; Ignacio Mendez-Balbuena; Amira Flores

We performed intracellular and single‐unit extracellular recordings of neurons from different regions of the basilar papilla in the isolated chicken inner ear. We compared the spontaneous activity and the response properties of these neurons in embryos at E15 versus posthatching animals at P1. The recordings were carried out from the apical (position 0) to the basal extension at three positions of the basilar papilla, at 5%, 10% and 40% of the entire length of the cochlea. We found that the neurons at E15 recorded from these three regions exhibited a significant higher coefficient of variation compared with those neurons at P1 recorded in the same positions. This shows that in the posthatching age P1 the neurons from the whole basilar papilla become less irregular. We found that the intracellular action potential waveforms generated at E15 had small amplitudes and small depolarization slopes in comparison to those recorded at P1, respectively (53 ± 1 mV vs. 62 ± 2 mV; 66 ± 12 mV/msec vs. 166 ± 23 mV/msec). Furthermore, we also found that the response patterns to injection of current steps were phasic, tonic, or in the form of a not yet reported “burst” pattern. Our study shows that the low irregular discharge, the immature action potential waveforms, and the differences in the response patterns to current injection, highlights the important differences between neurons at E15 and P1, consistent with the incapacity of auditory neurons at embryonic age E16, to respond at sound levels <100 decibels.

Collaboration


Dive into the Ignacio Mendez-Balbuena's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elias Manjarrez

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amira Flores

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar

Nayeli Huidobro

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Wang

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge