Ignacio Zarra
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ignacio Zarra.
Plant Physiology | 1996
M. Sanchez; M. J. Pena; Gloria Revilla; Ignacio Zarra
Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4–4[prime]-dihydroxy-3–3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed.
Aquaculture | 2004
Rosario Castro; Ignacio Zarra; Jesús Lamas
Abstract In this study, we investigated the effects of water-soluble extracts (WSE) from seaweed species Ulva rigida C. Agardh, Enteromorpha sp., Codium tomentosum (Huds) Stackh., Fucus vesiculosus L., Pelvetia canaliculata (L.) Decne et Thur, Dictyota dichotoma (Huds) Lamour, Chondrus crispus Stackh and Porphyra umbilicalis (L.) J. Agardh, on the respiratory burst of turbot phagocytes, in search of biologically active substances with immunostimulating capacities. The stimulatory capacities of the extracts varied greatly, depending on their origin, the concentrations used and the time of incubation. The best responses were induced by the extracts obtained from U. rigida , Enteromorpha sp. and C. crispus . Pre-incubation of the phagocyte cells with U. rigida and C. crispus extracts and subsequent incubation with phorbol myristate acetate (PMA) showed that these cells responded to further stimulation by this substance and, at some concentrations, they showed higher respiratory burst activity than control cells stimulated by PMA alone, suggesting that the extracts had a priming effect. We also tested the effects of protein-free water-soluble extracts (PF-WSE) and of the polysaccharide fractions (PSF) obtained from the PF-WSE of U. rigida and C. crispus . These extracts induced an increase in the respiratory burst activity of turbot phagocytes, suggesting that most of the stimulatory capacity of the water-soluble extracts was associated with polysaccharides.
Plant Physiology | 2010
Rumi Kaida; Satoshi Serada; Naoko Norioka; Shigemi Norioka; Lutz Neumetzler; Markus Pauly; Javier Sampedro; Ignacio Zarra; Takahisa Hayashi; Takako Kaneko
It is not yet known whether dephosphorylation of proteins catalyzed by phosphatases occurs in the apoplastic space. In this study, we found that tobacco (Nicotiana tabacum) purple acid phosphatase could dephosphorylate the phosphoryl residues of three apoplastic proteins, two of which were identified as α-xylosidase and β-glucosidase. The dephosphorylation and phosphorylation of recombinant α-xylosidase resulted in a decrease and an increase in its activity, respectively, when xyloglucan heptasaccharide was used as a substrate. Attempted overexpression of the tobacco purple acid phosphatase NtPAP12 in tobacco cells not only decreased the activity levels of the glycosidases but also increased levels of xyloglucan oligosaccharides and cello-oligosaccharides in the apoplast during the exponential phase. We suggest that purple acid phosphatase controls the activity of α-xylosidase and β-glucosidase, which are responsible for the degradation of xyloglucan oligosaccharides and cello-oligosaccharides in the cell walls.
Plant Physiology | 2010
Javier Sampedro; Brenda Pardo; Cristina Gianzo; Esteban Guitián; Gloria Revilla; Ignacio Zarra
Xyloglucan is the main hemicellulose in the primary cell walls of most seed plants and is thought to play a role in regulating the separation of cellulose microfibrils during growth. Xylose side chains block the degradation of the backbone, and α-xylosidase activity is necessary to remove them. Two Arabidopsis (Arabidopsis thaliana) mutant lines with insertions in the α-xylosidase gene AtXYL1 were characterized in this work. Both lines showed a reduction to undetectable levels of α-xylosidase activity against xyloglucan oligosaccharides. This reduction resulted in the accumulation of XXXG and XXLG in the liquid growth medium of Atxyl1 seedlings. The presence of XXLG suggests that it is a poor substrate for xyloglucan β-galactosidase. In addition, the polymeric xyloglucan of Atxyl1 lines was found to be enriched in XXLG subunits, with a concomitant decrease in XXFG and XLFG. This change can be explained by extensive exoglycosidase activity at the nonreducing ends of xyloglucan chains. These enzymes could thus have a larger role than previously thought in the metabolism of xyloglucan. Finally, Atxyl1 lines showed a reduced ability to control the anisotropic growth pattern of different organs, pointing to the importance of xyloglucan in this process. The promoter of AtXYL1 was shown to direct expression to many different organs and cell types undergoing cell wall modifications, including trichomes, vasculature, stomata, and elongating anther filaments.
Plant Physiology | 2012
Javier Sampedro; Cristina Gianzo; Natalia Iglesias; Esteban Guitián; Gloria Revilla; Ignacio Zarra
In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. In Arabidopsis (Arabidopsis thaliana), a significant proportion of xyloglucan side chains contain β-galactose linked to α-xylose at O2. In this work, we identified AtBGAL10 (At5g63810) as the gene responsible for the majority of β-galactosidase activity against xyloglucan. Xyloglucan from bgal10 insertional mutants was found to contain a large proportion of unusual subunits, such as GLG and GLLG. These subunits were not detected in a bgal10 xyl1 double mutant, deficient in both β-galactosidase and α-xylosidase. Xyloglucan from bgal10 xyl1 plants was enriched instead in XXLG/XLXG and XLLG subunits. In both cases, changes in xyloglucan composition were larger in the endoglucanase-accessible fraction. These results suggest that glycosidases acting on nonreducing ends digest large amounts of xyloglucan in wild-type plants, while plants deficient in any of these activities accumulate partly digested subunits. In both bgal10 and bgal10 xyl1, siliques and sepals were shorter, a phenotype that could be explained by an excess of nonreducing ends leading to a reinforced xyloglucan network. Additionally, AtBGAL10 expression was examined with a promoter-reporter construct. Expression was high in many cell types undergoing wall extension or remodeling, such as young stems, abscission zones, or developing vasculature, showing good correlation with α-xylosidase expression.
Plant Physiology | 2011
Vicente Ramírez; Astrid Agorio; Alberto Coego; Javier García-Andrade; M. José Hernández; Begoña Balaguer; Pieter B.F. Ouwerkerk; Ignacio Zarra; Pablo Vera
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5′ promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Journal of Experimental Botany | 2013
Elene R. Valdivia; María Teresa Herrera; Cristina Gianzo; Javier Fidalgo; Gloria Revilla; Ignacio Zarra; Javier Sampedro
In several dicotyledonous species, NAC transcription factors act as master switches capable of turning on programmes of secondary cell-wall synthesis and cell death. This work used an oestradiol-inducible system to overexpress the NAC transcription factor BdSWN5 in the monocot model Brachypodium distachyon. This resulted in ectopic secondary cell-wall formation in both roots and shoots. Some of the genes upregulated in the process were a secondary cell-wall cellulose synthase (BdCESA4), a xylem-specific protease (BdXCP1) and an orthologue of AtMYB46 (BdMYB1). While activation of BdMYB1 may not be direct, this study showed that BdSWN5 is capable of transactivating the BdXCP1 promoter through two conserved binding sites. In the course of Brachypodium development, the BdXCP1 promoter was observed to be active in all types of differentiating tracheary elements. Together, these results suggest that Brachypodium SWNs can act as switches that turn on secondary cell-wall synthesis and programmed cell death.
Physiologia Plantarum | 2011
Jorge Pedreira; María Teresa Herrera; Ignacio Zarra; Gloria Revilla
Understanding peroxidase function in plants is difficult because of the lack of substrate specificity, the high number of genes and their diversity in structure. In the present study, the relative expression of 22 genes coding putative peroxidases (E.C 1.11.1.x) in Arabidopsis was studied. The relative expression of AtPrx37 showed a correlation with the cessation of growth in rosette leaves as well as with the growth capacity along the flower stem. Using AtPrx37::GUS construction, its expression was associated with the vascular bundles. Furthermore, the overexpression of AtPrx37 under the control of CaMV 35S promoter rendered a dwarf phenotype with smaller plants and delayed development. The plants overexpressing AtPrx37 also showed an increase in the amount of esterified phenolic material associated with their walls. A role in the growth cessation and phenolic cross-linking during lignin deposition is postulated.
Phytochemistry | 1998
Antonio Cutillas-Iturralde; María Jesús Peña; Ignacio Zarra; Ester P. Lorences
Persimmon (Diospyros kaki L.) fruit cell walls have been shown to contain a high proportion of xyloglucan. This hemicellulosic polysaccharide appears to play a crucial role in the softening process that accompanies fruit ripening. In the present work, xyloglucan from persimmon fruit cell walls was extracted, purified and chemically characterized from alkali-extracted hemicelluloses. Monosaccharide analysis of purified xyloglucan showed a molar ratio of Glc:Xyl:Gal:Fuc of 10.0:6.0:3.4:1.4. Linkage analysis showed a high proportion of terminal residues, indicating a low degree of polymerization of side-chains.
Plant Physiology | 2017
Javier Sampedro; Elene R. Valdivia; Patricia Fraga; Natalia Iglesias; Gloria Revilla; Ignacio Zarra
Two Arabidopsis glucosidases, soluble BGLC1 and GPI-anchored BGLC3, are involved in xyloglucan metabolism and could differentially affect wall-bound and soluble fractions. In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3. In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1. We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer.