Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignasi Bartomeus is active.

Publication


Featured researches published by Ignasi Bartomeus.


Nature Communications | 2015

Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

David Kleijn; Rachael Winfree; Ignasi Bartomeus; Luísa G. Carvalheiro; Mickaël Henry; Rufus Isaacs; Alexandra-Maria Klein; Claire Kremen; Leithen K. M'Gonigle; Romina Rader; Taylor H. Ricketts; Neal M. Williams; Nancy Lee Adamson; John S. Ascher; András Báldi; Péter Batáry; Faye Benjamin; Jacobus C. Biesmeijer; Eleanor J. Blitzer; Riccardo Bommarco; Mariëtte R. Brand; Vincent Bretagnolle; Lindsey Button; Daniel P. Cariveau; Rémy Chifflet; Jonathan F. Colville; Bryan N. Danforth; Elizabeth Elle; Michael P. D. Garratt; Felix Herzog

There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Climate-associated phenological advances in bee pollinators and bee-pollinated plants

Ignasi Bartomeus; John S. Ascher; David L. Wagner; Bryan N. Danforth; Sheila R. Colla; Sarah Kornbluth; Rachael Winfree

The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated.


Oecologia | 2008

Contrasting effects of invasive plants in plant–pollinator networks

Ignasi Bartomeus; Montserrat Vilà; Luis Santamaría

The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotusaffine acinaciformis and Opuntiastricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Historical changes in northeastern US bee pollinators related to shared ecological traits.

Ignasi Bartomeus; John S. Ascher; Jason Gibbs; Bryan N. Danforth; David L. Wagner; Shannon M. Hedtke; Rachael Winfree

Pollinators such as bees are essential to the functioning of terrestrial ecosystems. However, despite concerns about a global pollinator crisis, long-term data on the status of bee species are limited. We present a long-term study of relative rates of change for an entire regional bee fauna in the northeastern United States, based on >30,000 museum records representing 438 species. Over a 140-y period, aggregate native species richness weakly decreased, but richness declines were significant only for the genus Bombus. Of 187 native species analyzed individually, only three declined steeply, all of these in the genus Bombus. However, there were large shifts in community composition, as indicated by 56% of species showing significant changes in relative abundance over time. Traits associated with a declining relative abundance include small dietary and phenological breadth and large body size. In addition, species with lower latitudinal range boundaries are increasing in relative abundance, a finding that may represent a response to climate change. We show that despite marked increases in human population density and large changes in anthropogenic land use, aggregate native species richness declines were modest outside of the genus Bombus. At the same time, we find that certain ecological traits are associated with declines in relative abundance. These results should help target conservation efforts focused on maintaining native bee abundance and diversity and therefore the important ecosystems services that they provide.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Non-bee insects are important contributors to global crop pollination

Romina Rader; Ignasi Bartomeus; Lucas A. Garibaldi; Michael P. D. Garratt; Brad G. Howlett; Rachael Winfree; Saul A. Cunningham; Margaret M. Mayfield; Anthony D. Arthur; Georg K.S. Andersson; Riccardo Bommarco; Claire Brittain; Luísa G. Carvalheiro; Natacha P. Chacoff; Martin H. Entling; Benjamin Foully; Breno Magalhães Freitas; Barbara Gemmill-Herren; Jaboury Ghazoul; Sean R. Griffin; C. L. Gross; Lina Herbertsson; Felix Herzog; Juliana Hipólito; Sue Jaggar; Frank Jauker; Alexandra-Maria Klein; David Kleijn; Smitha Krishnan; Camila Q. Lemos

Significance Many of the world’s crops are pollinated by insects, and bees are often assumed to be the most important pollinators. To our knowledge, our study is the first quantitative evaluation of the relative contribution of non-bee pollinators to global pollinator-dependent crops. Across 39 studies we show that insects other than bees are efficient pollinators providing 39% of visits to crop flowers. A shift in perspective from a bee-only focus is needed for assessments of crop pollinator biodiversity and the economic value of pollination. These studies should also consider the services provided by other types of insects, such as flies, wasps, beetles, and butterflies—important pollinators that are currently overlooked. Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.


Science | 2012

Unraveling the life history of successful invaders

Daniel Sol; Joan Maspons; Miquel Vall-llosera; Ignasi Bartomeus; Gabriel E. García-Peña; Josep Piñol; Robert P. Freckleton

Successful Invaders Invasive species have been integrated into ecosystems worldwide, and in many cases can cause significant ecological and economic damage. Not all non-native species, however, become invasive species; thus there has been much effort put toward understanding what makes a non-native “colonizer” an invader. It has been thought that, in general, successful invaders tend to be those that produce a large amount of offspring over a very short period of time, however, this pattern is absent in many successful invaders. Sol et al. (p. 580) looked at over 2700 invasions by bird species across the world and found no relationship between population growth rate and invasion success, although rapidly reproducing species could have an advantage when the new environment resembled their native environment. Furthermore, in many cases, those species that could prioritize survival, and delay reproduction, were much more successful than those forced to reproduce regardless of environmental conditions. Allocating resources to long-lived adults is one means by which birds succeed in new niches. Despite considerable current interest in biological invasions, the common life-history characteristics of successful invaders remain elusive. The widely held hypothesis that successful invaders have high reproductive rates has received little empirical support; however, alternative possibilities are seldom considered. Combining a global comparative analysis of avian introductions (>2700 events) with demographic models and phylogenetic comparative methods, we show that although rapid population growth may be advantageous during invasions under certain circumstances, more generally successful invaders are characterized by life-history strategies in which they give priority to future rather than current reproduction. High future breeding expectations reduce the costs of reproductive failure under uncertain conditions and increase opportunities to explore the environment and respond to novel ecological pressures.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Invasive plant integration into native plant–pollinator networks across Europe

Montserrat Vilà; Ignasi Bartomeus; Anke C. Dietzsch; Theodora Petanidou; Ingolf Steffan-Dewenter; Jane C. Stout; Thomas Tscheulin

The structure of plant–pollinator networks has been claimed to be resilient to changes in species composition due to the weak degree of dependence among mutualistic partners. However, detailed empirical investigations of the consequences of introducing an alien plant species into mutualistic networks are lacking. We present the first cross-European analysis by using a standardized protocol to assess the degree to which a particular alien plant species (i.e. Carpobrotus affine acinaciformis, Impatiens glandulifera, Opuntia stricta, Rhododendron ponticum and Solanum elaeagnifolium) becomes integrated into existing native plant–pollinator networks, and how this translates to changes in network structure. Alien species were visited by almost half of the pollinator species present, accounting on average for 42 per cent of the visits and 24 per cent of the network interactions. Furthermore, in general, pollinators depended upon alien plants more than on native plants. However, despite the fact that invaded communities received more visits than uninvaded communities, the dominant role of alien species over natives did not translate into overall changes in network connectance, plant linkage level and nestedness. Our results imply that although supergeneralist alien plants can play a central role in the networks, the structure of the networks appears to be very permeable and robust to the introduction of invasive alien species into the network.


Global Change Biology | 2013

Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops

Romina Rader; James Reilly; Ignasi Bartomeus; Rachael Winfree

If climate change affects pollinator-dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature-induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change.


Ecology Letters | 2014

The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness

Luísa G. Carvalheiro; Jacobus C. Biesmeijer; Gita Benadi; Jochen Fründ; Martina Stang; Ignasi Bartomeus; Christopher N. Kaiser-Bunbury; Mathilde Baude; Sofia I. F. Gomes; Vincent Merckx; Katherine C. R. Baldock; Andrew T. D. Bennett; Ruth Boada; Riccardo Bommarco; Ralph V. Cartar; Natacha P. Chacoff; Juliana Dänhardt; Lynn V. Dicks; Carsten F. Dormann; Johan Ekroos; Kate S. E. Henson; Andrea Holzschuh; Robert R. Junker; Martha Lopezaraiza-Mikel; Jane Memmott; Ana Montero-Castaño; Isabel L. Nelson; Theodora Petanidou; Eileen F. Power; Maj Rundlöf

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each others pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Annals of Botany | 2008

High Invasive Pollen Transfer, Yet Low Deposition on Native Stigmas in a Carpobrotus-invaded Community

Ignasi Bartomeus; Jordi Bosch; Montserrat Vilà

BACKGROUND AND AIMS Invasive plants are potential agents of disruption in plant-pollinator interactions. They may affect pollinator visitation rates to native plants and modify the plant-pollinator interaction network. However, there is little information about the extent to which invasive pollen is incorporated into the pollination network and about the rates of invasive pollen deposition on the stigmas of native plants. METHODS The degree of pollinator sharing between the invasive plant Carpobrotus affine acinaciformis and the main co-flowering native plants was tested in a Mediterranean coastal shrubland. Pollen loads were identified from the bodies of the ten most common pollinator species and stigmatic pollen deposition in the five most common native plant species. KEY RESULTS It was found that pollinators visited Carpobrotus extensively. Seventy-three per cent of pollinator specimens collected on native plants carried Carpobrotus pollen. On average 23 % of the pollen on the bodies of pollinators visiting native plants was Carpobrotus. However, most of the pollen found on the body of pollinators belonged to the species on which they were collected. Similarly, most pollen on native plant stigmas was conspecific. Invasive pollen was present on native plant stigmas, but in low quantity. CONCLUSIONS Carpobrotus is highly integrated in the pollen transport network. However, the plant-pollination network in the invaded community seems to be sufficiently robust to withstand the impacts of the presence of alien pollen on native plant pollination, as shown by the low levels of heterospecific pollen deposition on native stigmas. Several mechanisms are discussed for the low invasive pollen deposition on native stigmas.

Collaboration


Dive into the Ignasi Bartomeus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Montserrat Vilà

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Sol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge