Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignasi Ramírez is active.

Publication


Featured researches published by Ignasi Ramírez.


Cell Stress & Chaperones | 2002

Acute stress-induced tissue injury in mice: differences between emotional and social stress

Olga Sánchez; Anna Arnau; Miguel Pareja; Enric Poch; Ignasi Ramírez; Maria Soley

Abstract Emotional stress affects cellular integrity in many tissues including the heart. Much less is known about the effects of social stress. We studied the effect of emotional (immobilization with or without cold exposure) or social (intermale confrontation) stress in mice. Tissue injury was measured by means of the release of enzyme activities to blood plasma: lactate dehydrogenase (LDH), creatine kinase (CK), aspartate transaminase (AST), and alanine transaminase (ALT). Tape-immobilization increased all these activities in the plasma. AST-ALT ratio was also increased in these animals. Electrophoretic analysis of CK isoenzymes showed the appearance of CK-MB. These results indicate that the heart was injured in immobilized mice. Analysis of LDH isoenzymes and measurement of α-hydroxybutyrate dehydrogenase (HBDH) activity suggests that other tissues, in addition to the heart, contribute to the increase in plasma LDH activity. Restraint in small cylinders increased plasma LDH, CK, AST, and ALT activities, but to lower levels than in tape immobilization. Because the decrease in liver glycogen and the increase in plasma epidermal growth factor (EGF) were also smaller in restraint than in the tape-immobilization model of emotional stress, we conclude that the former is a less intense stressor than the latter. Cold exposure during the restraint period altered the early responses to stress (it enhanced liver glycogen decrease, but abolished the increase in plasma EGF concentration). Cold exposure during restraint enhanced heart injury, as revealed by the greater increase in CK and AST activities. Intermale confrontation progressively decreased liver glycogen content. Plasma EGF concentration increased (to near 100 nM from a resting value of 0.1 nM) until 60 minutes, and decreased thereafter. Confrontation also affected cellular integrity in some tissues, as indicated by the rise in plasma LDH activity. However, in this type of stress, the heart appeared to be specifically protected because there was no increase in plasma CK activity, and both AST and ALT increased, but the AST-ALT ratio remained constant. Habituation to restraint (1 h/d, 4 days) made mice resistant to restraint-induced tissue injury as indicated by the lack of an increase in plasma LDH, CK, AST, or ALT activities. Similar general protection against homotypic stress-induced injury was observed in mice habituated to intermale confrontation.


Lipids | 1994

Lipoprotein lipase and hepatic lipase in Wistar and Sprague-Dawley rat tissues. Differences in the effects of gender and fasting

Xavier Galan; Miquel Llobera; Ignasi Ramírez

To evaluate the effects of strain, gender and fasting in the regulation of lipoprotein lipase (LPL) and hepatic lipase (HL) activities were measured in tissues of male and female Wistar and Sprague-Dawley rats after feeding or a 24-h starvation period. It is noteworthy that an effect of gender on LPL activity was observed in Wistar, but not in Sprague-Dawley rats, not in the basal (fed) activity in several tissues, such as white and brown adipose tissues, heart, and brain, but also in response to fasting which affected LPL activity in brown adipose tissue, heat and lung of female but not of male Wistar rats. By contrast, HL activity in liver, plasma and adrenals of Sprague-Dawley rats was higher in females than in males. No effect of gender on HL activity was observed in Wistar rats. Our results indicate that differences exist between Wistar and Sprague-Dawley rats in the regulation of both LPL and HL. Some of the contradictory results found in the literature may be explained by the differences between rat strains and gender, as well as differences in the nutritional status of the animals.


Biochimica et Biophysica Acta | 1992

Neonatal extinction of liver lipoprotein lipase expression

Julia Peinado-Onsurbe; Bart Staels; Samir S. Deeb; Ignasi Ramírez; Miguel Llobera; Johan Auwerx

In contrast to the complete absence of lipoprotein lipase (LPL) mRNA in adult rat liver, fetal and neonatal rat liver contain substantial amounts of LPL mRNA, which is translated in active LPL protein as can be deduced from the presence of LPL activity in this organ. At this neonatal stage, both the relative abundance of LPL mRNA and LPL activity increased with starvation. During the suckling period, LPL mRNA and LPL activity gradually decreased until both parameters were undetectable. While the administration of L-thyroxine or hydrocortisone enhanced the disappearance of LPL mRNA, induced hypothyroidism delayed its disappearance. In adult animals induced hypothyroidism could not reactivate LPL mRNA production in the liver. The data presented suggest that liver LPL production responds to changes in the nutritional state and becomes extinguished during development, in a fashion reminiscent to the extinction of alpha-fetoprotein. This extinction of LPL gene expression is influenced by hormonal factors.


Cell Stress & Chaperones | 2000

Immobilization stress induces c-Fos accumulation in liver

Guillermo Fernández; Maria-Pau Mena; Anna Arnau; Olga Sánchez; Maria Soley; Ignasi Ramírez

Abstract Acute stress–induced injury in tissues has been revealed by both biochemical markers in plasma and microscopy. However, little is known of the mechanisms by which tissue integrity is restored. Recently, induction of early response genes such as c-fos has been reported in the heart and stomach of immobilized animals. Herein, we show that immobilization stress in mice increased plasma alanine aminotransferase activity, a marker of liver damage. c-Fos protein accumulation in liver was induced by stress after 20 minutes of immobilization and persisted for 3 hours. Immobilization also induced the release of epidermal growth factor (EGF) from submandibular salivary glands and a transient increase in EGF concentration in plasma. Although EGF administration induced a 2.5-fold increase in c-Fos mass in the liver of anesthetized mice, sialoadenectomy (which abolished the effect of immobilization on plasma EGF) did not affect the stress-induced rise in plasma alanine aminotransferase activity or liver c-Fos accumulation. Therefore, we conclude that immobilization stress induces c-Fos accumulation in liver and that this effect is not triggered by the increase in plasma EGF concentration.


Cellular Signalling | 1995

ROLE OF HETEROTRIMERIC G-PROTEINS IN EPIDERMAL GROWTH FACTOR SIGNALLING

Ignasi Ramírez; Francesc Tebar; Montserrat Grau; Maria Soley

Since in 1986 it was reported that a pertussis toxin-sensitive substrate was involved in the Ca2+ signal induced by epidermal growth factor (EGF) in rat hepatocytes, much evidence accumulated to implicate heterotrimeric G-proteins in EGF action. EGF can also induce a cyclic AMP signal, but while the generation of a Ca2+ signal appears to be quite general in EGF action, the increase in cyclic AMP occurs only in few cell types. In non-transformed cell types these effects appear to involve G-proteins. EGF not only induces cell proliferation but also interacts with hormones in the short-term control of cell function in quiescent cells. Most of the known interactions are on cyclic AMP mediated hormone effects, and in many cases, the interaction between EGF and hormones involves G-proteins. Here we review the evidence accumulated in recent years that implicate G-proteins in EGF action. An understanding of the mechanisms involved may reveal new mechanisms of G-protein regulation and will contribute to our knowledge of EGF function and signal transduction.


Bioscience Reports | 1989

Hepatic endothelial lipase activity in neonatal rat liver

Ferran Burgaya; Julia Peinado; Miquel Llobera; Ignasi Ramírez

Hepatic endothelial lipase (HEL) activity is as high in the neonatal (1-day old) rat liver as in adults. Most of the HEL activity is located at the capillaries since 75% of the total activity is released by heparin or collagenase perfusion. The residual activity (non-releasable) is located in hepatocytes and not in hemopoietic cells, which are the major cell type in neonatal liver. Per mg of protein, the HEL activity is 50% higher in neonatal than in adult hepatocytes. We suggest that neonatal hepatocytes have an increased capacity to synthesize and secrete HEL activity, so maintaining a high activity in the whole organ. it might contribute to the hepatic uptake of cholesterol from circulating lipoproteins, in a period in which endogenous cholesterol synthesis is known to be inhibited in the liver.


Biochimica et Biophysica Acta | 1985

Starvation enhances lipoprotein lipase activity in the liver of the newborn rat

Daniel R. Grinberg; Ignasi Ramírez; Senén Vilaró; Manuel Reina; Miquel Llobera; Emilio Herrera

To determine to what extent lipoprotein lipase activity in the liver of the newborn rat depends on milk ingestion, its changes were studied during different nutritional conditions. Newborns were placed with nurse rats with or without ligated nipples and they were killed at 0,8 or 24 h of life. Lipoprotein lipase in newborns liver was characterized by its inhibition in the presence of 1.0 M NaCl, its specific elution at 1.5 M NaCl on heparin-Sepharose 4B column and its requirement for serum in the assay mixture to manifest its activity. In fed animals lipoprotein lipase activity and triacylglycerol content in liver as well as circulating triacylglycerols and ketone bodies increased progressively after birth. When newborns were kept starved the change in enzyme activity was significantly enhanced, whereas the increase found after birth in the other parameters disappeared. Starvation produced reduction in circulating RIA-insulin levels in the newborn rats. Results show that liver lipoprotein lipase activity in the newborn rat is controlled by a mechanism which resembles that of the enzyme in the adult heart and indicate that its presence facilitates the uptake by the liver of fatty acids from circulating triacylglycerols for their oxidation rather than deposit.


Endocrinology | 1997

Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse.

Montserrat Grau; Maria Soley; Ignasi Ramírez

Epidermal growth factor (EGF) stimulates glycogenolysis in mouse liver, but the effect requires concentrations that are only achieved in plasma upon adrenergic stimulation of EGF release from submandibular salivary glands. Thus, we studied the interaction between adrenaline and EGF in liver glycogen metabolism, both in whole animals and in isolated hepatocytes. Adrenaline administered to anesthetized mice stimulated both the endocrine secretion of EGF from submandibular salivary glands and the degradation of glycogen in the liver. In sialoadenalectomized mice, adrenaline administration did not increase plasma EGF concentration. In these animals, the glycogenolytic response to adrenaline was enhanced. The sensitivity of hepatocytes to adrenaline was similar in cells from sialoadenalectomized and sham-operated mice. EGF, added to isolated hepatocytes, reduced the glycogenolytic effect of adrenaline (the maximal effect but not the ED50). Adrenaline stimulated glycogen degradation through both anα 1-adrenergi...


Biochimica et Biophysica Acta | 1988

Lipoprotein lipase in liver. Release by heparin and immunocytochemical localization

Senén Vilaró; Ignasi Ramírez; Gunilla Bengtsson-Olivecrona; Thomas Olivecrona; Miquel Llobera

We have previously demonstrated that infusion of Intralipid to rats causes a pronounced increase of the lipoprotein lipase activity in the liver. In this paper we study where in the liver this lipoprotein lipase is located. When isolated livers from Intralipid-treated rats were perfused with heparin, substantial amounts of lipoprotein lipase were released into the perfusate. The identity of the lipase activity was demonstrated by specific inhibition with antisera to lipoprotein lipase, and to hepatic lipase, respectively, and by separation of the two lipase activities by chromatography on heparin-Sepharose. We have also studied the localization of both enzymes by an immunostaining procedure based on post-embedding incubation of ultrathin tissue sections with specific antibodies which were then visualized using protein A-colloidal gold complexes. There was no marked difference in localization for the two enzymes which were both seen at the luminal side of endothelial cells, at the interdigitations of the space of Disse and inside both hepatocytes and endothelial cells. Thus, lipoprotein lipase is present in the liver in positions similar to where the functional pool of hepatic lipase is located and analogous to where lipoprotein lipase is found in extrahepatic tissues. These results raise the possibility that the enzyme has a functional role in the liver.


Biochimica et Biophysica Acta | 1992

Lipoprotein lipase and hepatic lipase activities are differentially regulated in isolated hepatocytes from neonatal rats

Julia Peinado-Onsurbe; Concepció Soler; Maria Soley; Miquel Llobera; Ignasi Ramírez

Lipoprotein lipase and hepatic lipase are members of the lipase gene family sharing a high degree of homology in their amino acid sequences and genomic organization. We have recently shown that isolated hepatocytes from neonatal rats express both enzyme activities. We show here that both enzymes are, however, differentially regulated. Our main findings are: (i) fasting induced an increase of the lipoprotein lipase activity but a decrease of the hepatic lipase activity in whole liver, being in both cases the vascular (heparin-releasable) compartment responsible for these variations. (ii) In isolated hepatocytes, secretion of lipoprotein lipase activity was increased by adrenaline, dexamethasone and glucagon but was not affected by epidermal growth factor, insulin or triiodothyronine. On the contrary, secretion of hepatic lipase activity was decreased by adrenaline but was not affected by other hormones. (iii) The effect of adrenaline on lipoprotein lipase activity appeared to involve beta-adrenergic receptors, but stimulation of both beta- and alpha 1-receptors seemed to be required for the effect of this hormone on hepatic lipase activity. And (iv), increased secretion of lipoprotein lipase activity was only observed after 3 h of incubation with adrenaline and was blocked by cycloheximide. On the contrary, decreased secretion of hepatic lipase activity was already significant after 90 min of incubation and was not blocked by cycloheximide. We suggest that not only synthesis of both enzymes, but also the posttranslational processing, are under separate control in the neonatal rat liver.

Collaboration


Dive into the Ignasi Ramírez's collaboration.

Top Co-Authors

Avatar

Maria Soley

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Lorita

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Xavier Galan

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge