Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignasi Roig is active.

Publication


Featured researches published by Ignasi Roig.


PLOS Genetics | 2009

Mouse HORMAD1 and HORMAD2, Two Conserved Meiotic Chromosomal Proteins, Are Depleted from Synapsed Chromosome Axes with the Help of TRIP13 AAA-ATPase

Lukasz Wojtasz; Katrin Daniel; Ignasi Roig; Ewelina Bolcun-Filas; Huiling Xu; Verawan Boonsanay; Christian R. Eckmann; Howard J. Cooke; Maria Jasin; Scott Keeney; Michael J. McKay; Attila Toth

Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins—HORMAD1 and HORMAD2—in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals.


Nature Cell Biology | 2011

Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1.

Katrin Daniel; Julian Lange; Khaled Hached; Jun Fu; Konstantinos Anastassiadis; Ignasi Roig; Howard J. Cooke; A. Francis Stewart; Katja Wassmann; Maria Jasin; Scott Keeney; Attila Toth

Meiotic crossover formation between homologous chromosomes (homologues) entails DNA double-strand break (DSB) formation, homology search using DSB ends, and synaptonemal-complex formation coupled with DSB repair. Meiotic progression must be prevented until DSB repair and homologue alignment are completed, to avoid the formation of aneuploid gametes. Here we show that mouse HORMAD1 ensures that sufficient numbers of processed DSBs are available for successful homology search. HORMAD1 is needed for normal synaptonemal-complex formation and for the efficient recruitment of ATR checkpoint kinase activity to unsynapsed chromatin. The latter phenomenon was proposed to be important in meiotic prophase checkpoints in both sexes. Consistent with this hypothesis, HORMAD1 is essential for the elimination of synaptonemal-complex-defective oocytes. Synaptonemal-complex formation results in HORMAD1 depletion from chromosome axes. Thus, we propose that the synaptonemal complex and HORMAD1 are key components of a negative feedback loop that coordinates meiotic progression with homologue alignment: HORMAD1 promotes homologue alignment and synaptonemal-complex formation, and synaptonemal complexes downregulate HORMAD1 function, thereby permitting progression past meiotic prophase checkpoints.


Nature Cell Biology | 2012

Homeostatic control of recombination is implemented progressively in mouse meiosis

Francesca Cole; Liisa Kauppi; Julian Lange; Ignasi Roig; Raymond Wang; Scott Keeney; Maria Jasin

Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 gene—with correspondingly greater or fewer numbers of early recombination foci—exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes.


PLOS Genetics | 2010

Mouse TRIP13/PCH2 Is Required for Recombination and Normal Higher-Order Chromosome Structure during Meiosis

Ignasi Roig; James A. Dowdle; Attila Toth; Dirk G. de Rooij; Maria Jasin; Scott Keeney

Accurate chromosome segregation during meiosis requires that homologous chromosomes pair and become physically connected so that they can orient properly on the meiosis I spindle. These connections are formed by homologous recombination closely integrated with the development of meiosis-specific, higher-order chromosome structures. The yeast Pch2 protein has emerged as an important factor with roles in both recombination and chromosome structure formation, but recent analysis suggested that TRIP13, the mouse Pch2 ortholog, is not required for the same processes. Using distinct Trip13 alleles with moderate and severe impairment of TRIP13 function, we report here that TRIP13 is required for proper synaptonemal complex formation, such that autosomal bivalents in Trip13-deficient meiocytes frequently displayed pericentric synaptic forks and other defects. In males, TRIP13 is required for efficient synapsis of the sex chromosomes and for sex body formation. Furthermore, the numbers of crossovers and chiasmata are reduced in the absence of TRIP13, and their distribution along the chromosomes is altered, suggesting a role for TRIP13 in aspects of crossover formation and/or control. Recombination defects are evident very early in meiotic prophase, soon after DSB formation. These findings provide evidence for evolutionarily conserved functions for TRIP13/Pch2 in both recombination and formation of higher order chromosome structures, and they support the hypothesis that TRIP13/Pch2 participates in coordinating these key aspects of meiotic chromosome behavior.


Chromosoma | 2004

Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes

Ignasi Roig; Bodo Liebe; J. Egozcue; L. Cabero; M. Garcia; Harry Scherthan

Chromosome segregation errors are a significant cause of aneuploidy among human neonates and often result from errors in female meiosis that occur during fetal life. For the latter reason, little is known about chromosome dynamics during female prophase I. Here, we analyzed chromosome reorganization, and centromere and telomere dynamics in meiosis in the human female by immunofluorescent staining of the SYCP3 and SYCP1 synaptonemal complex proteins and the course of recombinational DNA repair by IF of phospho-histone H2A.X (γ-H2AX), RPA and MLH1 recombination proteins. We found that SYCP3, but not SYCP1, aggregates appear in the preleptotene nucleus and some persist up to pachytene. Telomere clustering (bouquet stage) in oocytes lasted from late-leptotene to early pachytene—significantly longer than in the male. Leptotene and zygotene oocytes and spermatocytes showed strong γ-H2AX labeling, while γ-H2AX patches, which colocalized with RPA, were present on SYCP1-tagged pachytene SCs. This was rarely seen in the male and may suggest that synapsis installs faster with respect to progression of recombinational double-strand break repair or that the latter is slower in the female. It is speculated that the presence of γ-H2AX into pachytene highlights female-specific peculiarities of recombination, chromosome behavior and checkpoint control that may contribute to female susceptibility for aneuploidy.


Human Reproduction | 2010

Dynamics of cohesin proteins REC8, STAG3, SMC1β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes

Raquel Garcia-Cruz; M.A. Brieño; Ignasi Roig; M. Grossmann; E. Velilla; A. Pujol; L. Cabero; A. Pessarrodona; J.L. Barbero; M. Garcia Caldés

BACKGROUND Sister chromatid cohesion is essential for ordered chromosome segregation at mitosis and meiosis. This is carried out by cohesin complexes, comprising four proteins, which seem to form a ring-like complex. Data from animal models suggest that loss of sister chromatid cohesion may be involved in age-related non-disjunction in human oocytes. Here, we describe the distribution of cohesins throughout meiosis in human oocytes. METHODS We used immunofluorescence in human oocytes at different meiotic stages to detect cohesin subunits REC8, STAG3, SMC1 beta and SMC3, [also synaptonemal complex (SC) protein 3 and shugoshin 1]. Samples from euploid fetuses and adult women were collected, and 51 metaphase I (MI) and 113 metaphase II (MII) oocytes analyzed. SMC1 beta transcript levels were quantified in 85 maturing germinal vesicle (GV) oocytes from 34 women aged 19-43 years by real-time PCR. RESULTS At prophase I, cohesin subunits REC8, STAG3, SMC1 beta and SMC3 overlapped with the lateral element of the SC. Short cohesin fibers are observed in the oocyte nucleus during dictyate arrest. All four subunits are observed at centromeres and along chromosomal arms, except at chiasmata, at MI and are present at centromeric domains from anaphase I to MII. SMC1 beta transcripts were detected (with high inter-sample variability) in GV oocytes but no correlation between SMC1 beta mRNA levels and age was found. CONCLUSIONS The dynamics of cohesins REC8, STAG3, SMC1 beta and SMC3 suggest their participation in sister chromatid cohesion throughout the whole meiotic process in human oocytes. Our data do not support the view that decreased levels of SMC1 beta gene expression in older women are involved in age-related non-disjunction.


PLOS Genetics | 2008

ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes.

Marco Barchi; Ignasi Roig; Monica Di Giacomo; Dirk G. de Rooij; Scott Keeney; Maria Jasin

During meiosis in most sexually reproducing organisms, recombination forms crossovers between homologous maternal and paternal chromosomes and thereby promotes proper chromosome segregation at the first meiotic division. The number and distribution of crossovers are tightly controlled, but the factors that contribute to this control are poorly understood in most organisms, including mammals. Here we provide evidence that the ATM kinase or protein is essential for proper crossover formation in mouse spermatocytes. ATM deficiency causes multiple phenotypes in humans and mice, including gonadal atrophy. Mouse Atm−/− spermatocytes undergo apoptosis at mid-prophase of meiosis I, but Atm−/− meiotic phenotypes are partially rescued by Spo11 heterozygosity, such that ATM-deficient spermatocytes progress to meiotic metaphase I. Strikingly, Spo11+/−Atm−/− spermatocytes are defective in forming the obligate crossover on the sex chromosomes, even though the XY pair is usually incorporated in a sex body and is transcriptionally inactivated as in normal spermatocytes. The XY crossover defect correlates with the appearance of lagging chromosomes at metaphase I, which may trigger the extensive metaphase apoptosis that is observed in these cells. In addition, control of the number and distribution of crossovers on autosomes appears to be defective in the absence of ATM because there is an increase in the total number of MLH1 foci, which mark the sites of eventual crossover formation, and because interference between MLH1 foci is perturbed. The axes of autosomes exhibit structural defects that correlate with the positions of ongoing recombination. Together, these findings indicate that ATM plays a role in both crossover control and chromosome axis integrity and further suggests that ATM is important for coordinating these features of meiotic chromosome dynamics.


Frontiers in Genetics | 2013

The ATM signaling network in development and disease

Travis H. Stracker; Ignasi Roig; Philip A. Knobel; Marko Marjanović

The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease.


Science | 2010

Meiotic recombination provokes functional activation of the p53 regulatory network.

Wan-Jin Lu; Joseph Chapo; Ignasi Roig; John M. Abrams

Germline Quality Control The p53 tumor suppressor protein plays a key role in protecting organisms from aberrant cancer cells. But during evolution, animals would rarely, if ever, have lived long enough to develop cancer and so need such a function of p53. What, then, were the original functions for which p53 was selected? Lu et al. (p. 1278) observed a pulse of p53 activation during Drosophila development in the female germ line. In cancer, p53 is activated in response to DNA damage. Similarly, in this study, breaks in DNA that occur normally during meiosis also caused p53 activation. In animals in which resolution of DNA breaks during crossing over was inhibited, activation of p53 was prolonged; furthermore, when p53 was also lacking oogenesis was abnormal. Exactly how activation of p53 contributes to the process of chromosome recombination during meiosis remains unclear, but it may provide quality control, only allowing survival of gametes that possess intact DNA. A tumor suppressor appears to protect against aberrant chromosome breakage during meiosis. The evolutionary appearance of p53 protein probably preceded its role in tumor suppression, suggesting that there may be unappreciated functions for this protein. Using genetic reporters as proxies to follow in vivo activation of the p53 network in Drosophila, we discovered that the process of meiotic recombination instigates programmed activation of p53 in the germ line. Specifically, double-stranded breaks in DNA generated by the topoisomerase Spo11 provoked functional p53 activity, which was prolonged in cells defective for meiotic DNA repair. This intrinsic stimulus for the p53 regulatory network is highly conserved because Spo11-dependent activation of p53 also occurs in mice. Our findings establish a physiological role for p53 in meiosis and suggest that tumor-suppressive functions may have been co-opted from primordial activities linked to recombination.


Developmental Biology | 2011

The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis.

Yan Yin; Congxing Lin; Sung Tae Kim; Ignasi Roig; Hong Chen; Liren Liu; George Michael Veith; Ramon U. Jin; Scott Keeney; Maria Jasin; Kelle H. Moley; Pengbo Zhou; Liang Ma

The Cullin-RING ubiquitin-ligase CRL4 controls cell cycle and DNA damage checkpoint response and ensures genomic integrity. Inactivation of the Cul4 component of the CRL4 E3 ligase complex in Caenorhabditis elegans by RNA interference results in massive mitotic DNA re-replication in the blast cells, largely due to failed degradation of the DNA licensing protein, CDT-1, and premature spermatogenesis. Here we show that inactivation of Cul4a by gene-targeting in mice only affected male but not female fertility. This male infertility phenotype resulted from a combination of decreased spermatozoa number, reduced sperm motility and defective acrosome formation. Agenesis of the mutant germ cells was accompanied by increased cell death in pachytene/diplotene cells with markedly elevated levels of phospho-p53 and CDT-1. Despite apparent normal assembly of synaptonemal complexes and DNA double strand break repair, dissociation of MLH1, a component of the late recombination nodule, was delayed in Cul4a -/- diplotene spermatocytes, which potentially led to subsequent disruptions in meiosis II and spermiogenesis. Together, our study revealed an indispensable role for Cul4a during male germ cell meiosis.

Collaboration


Dive into the Ignasi Roig's collaboration.

Top Co-Authors

Avatar

Scott Keeney

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maria Jasin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L. Cabero

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Raquel Garcia-Cruz

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

M. Garcia Caldés

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

P. Robles

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

J. Egozcue

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

M. Garcia

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

M.A. Brieño-Enríquez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

R. Garcia

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge