Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ignazio Allegretta is active.

Publication


Featured researches published by Ignazio Allegretta.


Environmental Science and Pollution Research | 2017

Effects of municipal solid waste- and sewage sludge-compost-based growing media on the yield and heavy metal content of four lettuce cultivars

Concetta Eliana Gattullo; Carlo Mininni; Angelo Parente; Francesco Montesano; Ignazio Allegretta; Roberto Terzano

Compost has been recently suggested as an alternative to peat for the preparation of growing substrates in soilless cultivation systems. However, some physico-chemical properties of compost may reduce plant performance and endanger the quality of productions, in particular for possible heavy metal accumulation in edible parts. This study aims at evaluating the suitability of a municipal solid waste compost (MSWC) and a sewage sludge compost (SSC) as components of growing media for the soilless cultivation of lettuce (Lactuca sativa L.). Heavy metal content of SSC complied with legislation limits but, in MSWC, it exceeded (Cu, Pb) or was very close (Cd, Zn) to safe limits. A greenhouse experiment was carried out by cultivating four lettuce cultivars (“Maximus,” “Murai,” “Patagonia,” and “Aleppo”) in pots containing a mixture of MSWC and perlite (MSWC + P), SSC and perlite (SSC + P), or peat and perlite (peat + P), the latter used as control. Plant biometric parameters measured after 72xa0days of growth revealed that the yield of plants cultivated on SSC + P was similar to control plants, independently of the cultivar. Conversely, MSWC + P suppressed in general the biomass production, especially for Murai and Patagonia cultivars. Compared to peat + P, both compost-based substrates reduced the leaf accumulation of heavy metals, with a major effect in Maximus plants. The levels of Cd and Pb in the edible part were always below the safe limits imposed by European regulation. Therefore, risks of heavy metal intake in food chain associated with the replacement of peat with compost in the growing media are negligible, even when a compost with a significant amount of heavy metals is used. Besides compost quality monitoring, also an appropriate varietal choice is crucial to obtain good yields and safe products.


Chemosphere | 2017

Leaf biochemical responses and fruit oil quality parameters in olive plants subjected to airborne metal pollution

Radhia Fourati; Antonio Scopa; Chedlia Ben Ahmed; Ferjani Ben Abdallah; Roberto Terzano; Concetta Eliana Gattullo; Ignazio Allegretta; Fernanda Galgano; Marisa Carmela Caruso; Adriano Sofo

This study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques. The aim was to investigate the physiological and biochemical responses of polluted plants (PP), exposed to atmospheric metal contamination (Cd, Cu, Fe, Mn, Ni and Pb) as compared to control plants (CP). Leaves, roots and fruits of PP showed a depression of their non-enzymatic and enzymatic antioxidant defences and a disruption of their hormonal homeostasis. The anomalous physiological status of PP was also demonstrated by the lower values of pigments in leaves and fruits, as compared to CP. Atmospheric metals negatively affected olive oil chemical and sensory quality. However, despite metal deposition on fruit surfaces, the accumulation of potentially toxic metals in olive oil was negligible. Considering that olive oil is an important food product worldwide and that many productive olive orchards are exposed to several sources of pollution, this work could contribute to clarify the effects of atmospheric metal pollution on olive oil quality and its potential toxicity for humans.


Talanta | 2018

Application of micro X-ray fluorescence and micro computed tomography to the study of laser cleaning efficiency on limestone monuments covered by black crusts

Giorgio S. Senesi; Ignazio Allegretta; Carlo Porfido; Olga De Pascale; Roberto Terzano

Laser cleaning is widely used to remove black crusts from weathered limestone monuments. The cleaning efficiency is commonly tested using conventional analytical techniques, which do not allow to analyze the same sample before and after the treatment. In this paper, micro computed tomography (μ-CT) and micro X-ray fluorescence spectroscopy (μ-XRF) techniques were used for the first time to evaluate the laser cleaning efficiency on two different encrusted quoins collected from a limestone monument. Analyses were carried out non-destructively on the same portion of the two lithotypes before and after the treatment. μ-XRF confirmed the presence of gypsum in the black crust, and showed a marked decrease of S and other typical elements after laser cleaning of both samples. μ-CT clearly showed the different structure of limestone before and after cleaning and the crust portion removed by the laser. The combination of the two techniques allowed to assess that, even if the two samples had a similar chemical composition, their response to laser cleaning was different on dependence of their different fabric/structure. In fact, in one sample calcium sulphate was still partially retained also after the black crust removal, whereas in the other sample the sulphate layer was almost completely ablated due to its more compact structure. In both cases, laser cleaning operation was shown not to cause any structural modification or mechanical damage of the original stone material. In conclusion, the use of these novel techniques appears very promising for studying the effects of laser ablation on rock samples in order to set the best working conditions for their cleaning.


American Mineralogist | 2017

Non-destructive, multi-method, internal analysis of multiple inclusions in a single diamond: First occurrence of mackinawite (Fe,Ni)1+xS

Giovanna Agrosì; Gioacchino Tempesta; Daniela Mele; Ignazio Allegretta; Roberto Terzano; Steven B. Shirey; Graham D. Pearson; Fabrizio Nestola

Abstract A single gem lithospheric diamond with five sulfide inclusions from the Udachnaya kimberlite (Siberia, Russia) has been analyzed non-destructively to track the growth conditions of the diamond. Sulfides are the most abundant mineral inclusions in many lithospheric diamond crystals and are the most favorable minerals to date diamond crystals by Re-Os isotope systematics. Our investigation used non-destructive, micro-techniques, combining X-ray tomography, X-ray fluorescence, X-ray powder diffraction, and Raman spectroscopy. This approach allowed us to determine the spatial distribution of the inclusions, their chemical and mineralogical composition on the microscale, and, finally, the paragenetic association, leaving the diamond host completely unaffected. The sample was also studied by X-ray diffraction topography to characterize the structural defects of the diamond and to obtain genetic information about its growth history. The X-ray topographic images show that the sample investigated exhibits plastic deformation. One set of {111} slip lamellae, corresponding to polysynthetic twinning, affects the entire sample. Chemical data on the inclusions still trapped within the diamond show they are monosulfide solid solutions of Fe, Ni and indicate a peridotitic paragenesis. Micro-X-ray diffraction reveals that the inclusions mainly consist of a polycrystalline aggregate of pentlandite and pyrrothite. A thorough analysis of the Raman data suggests the presence of a further Fe, Ni sulfide, never reported so far in diamonds: mackinawite. The total absence of any oxides in the sulfide assemblage clearly indicates that mackinawite is not simply a “late” alteration of pyrrhotite and pentlandite due to secondary oxidizing fluids entering diamond fractures after the diamond transport to the surface. Instead, it is likely formed as a low-temperature phase that grew in a closed system within the diamond host. It is possible that mackinawite is a more common phase in sulfide assemblages within diamond crystals than has previously been presumed, and that the percentage of mackinawite within a given sulfide assemblage could vary from diamond to diamond and from locality to locality.


Journal of Hazardous Materials | 2018

Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes

Concetta Eliana Gattullo; Caterina D’Alessandro; Ignazio Allegretta; Carlo Porfido; Matteo Spagnuolo; Roberto Terzano

Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing.


Environmental Science and Pollution Research | 2018

S olubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions

Mohammad Yaghoubi Khanghahi; Patrizia Ricciuti; Ignazio Allegretta; Roberto Terzano; Carmine Crecchio

In this research, the optimum growth conditions for two zinc solubilizing bacteria (ZSB) have been studied for their potential application as bioinoculants to overcome Zn unavailability in soils. For this purpose, a laboratory-scale experiment was carried out to evaluate the zinc solubilizing ability of 80 plant growth promoting bacteria (PGPB) strains isolated from the rhizosphere of barley and tomato plants. To select effective ZSB, isolates were evaluated on Tris-mineral medium supplemented separately with zinc oxide, zinc carbonate, and zinc phosphate at a concentration of 0.1%. Two strains (Agrobacterium tumefaciens and Rhizobium sp.) were selected, based on a clear halo zone around their colonies in the solid medium supplemented with zinc oxide after 10xa0days of incubation at 29xa0°C. Results of solubilization at different pH values showed that these strains had solubilization activity in the range of pH 8–10 while no solubilization was observed at pH 6 and 7. The maximum Zn solubilization values were noted at pH 9: 51.4xa0mgxa0L−1 (Agrobacterium tumefaciens) and 72.1xa0mgxa0L−1 (Rhizobium sp). According to findings, bacterial growth was affected by different NaCl concentrations under in vitro condition. The salt concentration required for 50% inhibition of absorbance was 2.11 and 2.27% NaCl for Agrobacterium tumefaciens and Rhizobium sp., respectively. The maximum bacterial growth was observed at about 0.8% NaCl concentration.


Environmental Science and Pollution Research | 2018

Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy)

Ignazio Allegretta; Carlo Porfido; María Martín; Elisabetta Barberis; Roberto Terzano; Matteo Spagnuolo

Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200xa0mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50–80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1–3xa0g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.


Pedosphere | 2017

Iron Mobilization and Mineralogical Alterations Induced by Iron-Deficient Cucumber Plants (Cucumis sativus L.) in a Calcareous Soil

Concetta Eliana Gattullo; Youry Pii; Ignazio Allegretta; Luca Medici; Stefano Cesco; Tanja Mimmo; Roberto Terzano

Abstract Dicotyledons cope with ion (Fe) shortage by releasing low-molecular-weight organic compounds into the rhizosphere to mobilize Fe through reduction and complexation mechanisms. The effects induced by these root exudates on soil mineralogy and the connections between Fe mobilization and mineral weathering processes have not been completely clarified. In a batch experiment, we tested two different kinds of organic compounds commonly exuded by Fe-deficient plants, i.e., three organic acids (citrate, malate, and oxalate) and three flavonoids (rutin, quercetin, and genistein), alone or in combination, for their ability to mobilize Fe from a calcareous soil and modify its mineralogy. The effect of root exudates on soil mineralogy was assessed in vivo by cultivating Fe-deficient and Fe-sufficient cucumber plants (Cucumis sativus L.) in a RHIZOtest device. Mineralogical analyses were performed by X-ray powder diffraction. The batch experiment showed that citrate and, particularly, rutin (alone or combined with organic acids or genistein) promoted Fe mobilization from the soil. The combinations of rutin and organic acids modified the soil mineralogy by dissolving the amorphous fractions and promoting the formation of illite. These mineralogical alterations were significantly correlated with the amount of Fe mobilized from the soil. The RHIZOtest experiment revealed a drastic dissolution of amorphous components in the rhizosphere soil of Fe-deficient plants, possibly caused by the intense release of phenolics, amino acids, and organic acids, but without any formation of illite. Both batch and RHIZOtest experiments proved that exudates released by cucumber under Fe deficiency concurred to the rapid modification (on a day-scale) of the mineralogy of a calcareous soil.


Journal of Plant Nutrition and Soil Science | 2016

Silicon dynamics in the rhizosphere: Connections with iron mobilization

Concetta Eliana Gattullo; Ignazio Allegretta; Luca Medici; Rebeka Fijan; Youry Pii; Stefano Cesco; Tanja Mimmo; Roberto Terzano


Thermochimica Acta | 2014

The effect of temper on the thermal conductivity of traditional ceramics: Nature, percentage and granulometry

Ignazio Allegretta; Giacomo Eramo; Daniela Pinto; Anno Hein

Collaboration


Dive into the Ignazio Allegretta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Cesco

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar

Tanja Mimmo

Free University of Bozen-Bolzano

View shared research outputs
Researchain Logo
Decentralizing Knowledge