Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor A. Pašti is active.

Publication


Featured researches published by Igor A. Pašti.


Chemical Papers | 2013

Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials

Gordana Ćirić-Marjanović; Igor A. Pašti; Nemanja Gavrilov; Aleksandra Janošević; Slavko Mentus

Polyaniline (PANI) and polypyrrole (PPY) undergo carbonisation in an inert/reduction atmosphere and vacuum, yielding different nitrogen-containing carbon materials. This contribution reviews various procedures for the carbonisation of PANI and PPY precursors, and the characteristics of obtained carbonised PANI (C-PANI) and carbonised PPY (C-PPY). Special attention is paid to the role of synthetic procedures in tailoring the formation of C-PANI and C-PPY nanostructures and nanocomposites. The review considers the importance of scanning and transmission electron microscopies, XPS, FTIR, Raman, NMR, and EPR spectroscopies, electrical conductivity and adsorption/desorption measurements, XRD, and elemental analyses in the characterisation of C-PANIs and C-PPYs. The application of C-PANI and C-PPY in various fields of modern technology is also reviewed.


ACS Applied Materials & Interfaces | 2015

Interfacial Synthesis of Gold-Polyaniline Nanocomposite and Its Electrocatalytic Application.

Una Bogdanović; Igor A. Pašti; Gordana Ćirić-Marjanović; Miodrag Mitrić; Scott P. Ahrenkiel; Vesna Vodnik

Gold-polyaniline (Au-PANI) nanocomposite was prepared using a simple interfacial polymerization method, performed in an immiscible water/toluene biphasic system using tetrachloroaurate, AuCl4(-) as an oxidant. The formation of Au nanoparticles (AuNPs) or Au-PANI nanocomposite can be controlled to a certain degree by varying the ratio of initial Au(+) and aniline concentrations. Under optimal condition (HAuCl4/aniline ratio is 1:2), green dispersion of Au-PANI nanocomposite is produced in aqueous phase, whose morphology, structure and physicochemical properties are investigated in details. The nanocomposite shows granular morphology with mostly rodlike AuNPs embedded in polymer. It was found that polyaniline in the composite is in the conducting emeraldine salt form, containing high amount of Au (28.85 wt %). Furthermore, the electrical conductivity of the nanocomposite was found to be four-fold higher than that of the polymer itself. In addition, the nanocomposite powder, isolated from the as-prepared aqueous dispersion, can later be easily redispersed in water and further used for various applications. Moreover, the obtained Au-PANI nanocomposite showed excellent electrocatalytic performance toward the electrochemical oxygen reduction reaction (ORR), with high ORR onset potential and good selectivity. This makes it a promising candidate for a new class of Pt-free ORR catalyst.


Advances in Physical Chemistry | 2011

Hydrogen Adsorption on Palladium and Platinum Overlayers: DFT Study

Igor A. Pašti; Nemanja Gavrilov; Slavko Mentus

Hydrogen adsorption on twenty different palladium and platinum overlayer surfaces with (111) crystallographic orientation was studied by means of periodic DFT calculations on the GGA-PBE level. Palladium and platinum overlayers here denote either the Pd and Pt mono- and bilayers deposited over (111) crystallographic plane of Pd, Pt, Cu, and Au monocrystals or the (111) crystallographic plane of Pd and Pt monocrystals with inserted one-atom-thick surface underlayer of Pd, Pt, Cu, and Au. The attention was focused on the bond lengths, hydrogen adsorption energetics, mobility of adsorbed hydrogen, and surface reactivity toward hydrogen electrode reactions. Both the ligand and strain effects were considered, found to lead to a significant modification of the electronic structure of Pd and Pt overlayers, described through the position of the d-band center, and tuning of the hydrogen adsorption energy in the range that covers approximately 120 kJmol−1. Mobility of hydrogen adsorbed on studied overlayers was found to be determined by hydrogen-metal binding energy. Obtained results regarding Pd layers on Pt(111) and Au(111) surfaces, in conjunction with some of the recent experimental data, were used to explain its electrocatalytic activity towards hydrogen evolution reaction.


Journal of Pharmaceutical and Biomedical Analysis | 2012

Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts

Branislav Nastasijević; Tamara Lazarević-Pašti; Suzana Dimitrijević-Branković; Igor A. Pašti; Ana Vujačić; Gordana Joksić; Vesna Vasić

The aim of this study was to investigate the inhibitory activity of Gentiana lutea extracts on the enzyme myeloperoxidase (MPO), as well as the antioxidant activity of these extracts and their correlation with the total polyphenol content. Extracts were prepared using methanol (100%), water and ethanol aqueous solutions (96, 75, 50 and 25%v/v) as solvents for extraction. Also, isovitexin, amarogentin and gentiopicroside, pharmacologically active constituents of G. lutea were tested as potential inhibitors of MPO. Antioxidant activity of extracts was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test and also using cyclic voltammetry (CV). Among all extracts, the antioxidant capacity of 50% ethanol aqueous extract was the highest, both when measured using the DPPH test, with IC(50)=20.6 μg/ml, and when using CV. Also, 50% ethanol extract, showed the best inhibition of MPO activity in comparison with other extracts. In the group of the selected G. lutea constituents, gentiopicroside has proved to be the strongest inhibitor of MPO, with IC(50)=0.8 μg/ml. Also, the concentration of G. lutea constituents were determined in all extracts, using Ultra Performance Liquid Chromatography (UPLC).


Russian Journal of Physical Chemistry A | 2011

Systematic DFT-GGA study of hydrogen adsorption on transition metals

D. Vasić; Z. Ristanović; Igor A. Pašti; Slavko Mentus

Computational study of hydrogen adsorption on (111) surface of transition metals with face centered cubic (fcc) lattice is reported and the results are compared with available experimental and theoretical data. In addition, dissociative adsorption of hydrogen on Pt(111), Pt(100) and Pt(110) is studied in the range of coverage from 0.25 to 1 monolayer. In the case of Pt(111) preferential adsorption site was found to be three-coordinated fcc-hollow site, while on Pt(100) and Pt(110) surface hydrogen settles on two-coordinated bridge and short bridge site, respectively. Hydrogen adsorption energy was found to decrease with the increasing coverage. Structural changes of studied Pt surfaces upon hydrogen adsorption have been compared with the experimental data existing in the literature and good qualitative agreement has been obtained.


RSC Advances | 2014

The preferred radical scavenging mechanisms of fisetin and baicalein towards oxygen-centred radicals in polar protic and polar aprotic solvents

Jasmina M. Dimitrić Marković; Dejan Milenković; Dragan Amić; Miloš Mojović; Igor A. Pašti; Zoran Marković

Naturally occurring flavonoid molecules, i.e. fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) and baicalein (5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one), have been investigated experimentally and theoretically for their ability to scavenge hydroxyl and superoxide anion radicals. The reaction enthalpies for the reaction of fisetin and baicalein with selected radical species, related to three mechanisms of free radical scavenging activity (HAT, SET-PT and SPLET), are calculated using the M05-2X/6-311+G(d,p) model. The calculated energy requirements indicated the preferred radical scavenging mechanisms in polar protic and aprotic solvents.


Structural Chemistry | 2014

Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms

Jasmina M. Dimitrić Marković; Dejan Milenković; Dragan Amić; Ana Popović-Bijelić; Miloš Mojović; Igor A. Pašti; Zoran Marković

Abstract Kaempferol, one of the most bioactive plant flavonoids was experimentally and theoretically (at M05-2X/6-311G(d,p) level of theory) investigated for its ability to scavenge potentially, highly damaging hydroxyl and superoxide anion radicals. Relating the obtained hydroxyl radical activity sequence with kaempferol structural features, it could be assumed that C4′-OH functional most probably renders it as hydroxyl radical scavenger, while C5-OH group has more prominent role compared to ortho-hydroxy groups in B ring. However, kaempferol’s activity toward superoxide anion radical implicates ortho-hydroxy groups in B ring as more relevant. Theoretical calculations point to HAT and SPLET mechanisms as operative for kaempferol in all solvents under investigations.Graphical AbstractThe present paper aims to provide quantitative tools to thoroughly and comprehensively determine antiradical mechanisms of kaempferol in different media.


Scientific Reports | 2016

Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N -phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements

Aleksandra Janošević Ležaić; Sandra Luginbühl; Danica Bajuk-Bogdanović; Igor A. Pašti; Reinhard Kissner; Boris Rakvin; Peter Walde; Gordana Ćirić-Marjanović

We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80–100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of “ordinary” PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1–as expected for PANI-ES–but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.


Reaction Kinetics, Mechanisms and Catalysis | 2015

Theoretical studies in catalysis and electrocatalysis: from fundamental knowledge to catalyst design

Igor A. Pašti; Natalia V. Skorodumova; Slavko Mentus

Catalytic processes are an indispensable part of a large number of contemporary technologies that stimulate a constant research and development effort in the field. Computational methods represent a valuable tool to investigate crucial steps of catalytic cycles able to reveal the main characteristics of a catalyst and provide a basis for the design of materials with superior catalytic activity. This review is focused on the recent advances in density functional theory studies of the interactions of reactive species and intermediates with solid surfaces. As examples, we discuss the catalysts for the CO oxidation and electrocatalysis of H2 and O2 electrode reactions. We demonstrate how the theoretical modelling can contribute to the understanding of catalytic processes and help to design new catalysts and electrocatalysts.


Russian Journal of Physical Chemistry A | 2013

DFT study of interaction of O, O2, and OH with unreconstructed Pt(hkl) (h, k, l = 0, 1) surfaces—similarities, differences, and universalities

D. Vasić; Igor A. Pašti; Nemanja Gavrilov; Slavko Mentus

Adsorption of O, O2, and OH on Pt(111), Pt(100), and Pt(110) surfaces was studied using periodic DFT calculations. It was found that generally adsorbate-surface interaction strengths increase with the decrease in surface packing density. On the Pt(111) surface the dissociation of O2 molecule was not predicted, but it was predicted on Pt(100) and Pt(110) surfaces. While the strength of the adsorbate-substrate interaction decreases with the rise in surface coverage by O atoms, in the case of OH adsorption adsorbate layer gets stabilized at higher surface coverage through the hydrogen bonding. In spite of all the mentioned differences, single parameter of surface electronic structure was identified, being useful for the explanation of the adsorption trends at different adsorption sites for O and OH adsorption on Pt surfaces of various crystallographic orientations and also provided a deeper understanding of atomic oxygen adsorption as a function of surface coverage.

Collaboration


Dive into the Igor A. Pašti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge