Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor B. Rogozin is active.

Publication


Featured researches published by Igor B. Rogozin.


Science | 2011

The ecoresponsive genome of Daphnia pulex

John K. Colbourne; Michael E. Pfrender; Donald L. Gilbert; W. Kelley Thomas; Abraham Tucker; Todd H. Oakley; Shin-ichi Tokishita; Andrea Aerts; Georg J. Arnold; Malay Kumar Basu; Darren J Bauer; Carla E. Cáceres; Liran Carmel; Claudio Casola; Jeong Hyeon Choi; John C. Detter; Qunfeng Dong; Serge Dusheyko; Brian D. Eads; Thomas Fröhlich; Kerry A. Geiler-Samerotte; Daniel Gerlach; Phil Hatcher; Sanjuro Jogdeo; Jeroen Krijgsveld; Evgenia V. Kriventseva; Dietmar Kültz; Christian Laforsch; Erika Lindquist; Jacqueline Lopez

The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions. We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Genome Biology | 2002

Selection in the evolution of gene duplications

Fyodor A. Kondrashov; Igor B. Rogozin; Yuri I. Wolf; Eugene V. Koonin

BackgroundGene duplications have a major role in the evolution of new biological functions. Theoretical studies often assume that a duplication per se is selectively neutral and that, following a duplication, one of the gene copies is freed from purifying (stabilizing) selection, which creates the potential for evolution of a new function.ResultsIn search of systematic evidence of accelerated evolution after duplication, we used data from 26 bacterial, six archaeal, and seven eukaryotic genomes to compare the mode and strength of selection acting on recently duplicated genes (paralogs) and on similarly diverged, unduplicated orthologous genes in different species. We find that the ratio of nonsynonymous to synonymous substitutions (Kn/Ks) in most paralogous pairs is <<1 and that paralogs typically evolve at similar rates, without significant asymmetry, indicating that both paralogs produced by a duplication are subject to purifying selection. This selection is, however, substantially weaker than the purifying selection affecting unduplicated orthologs that have diverged to the same extent as the analyzed paralogs. Most of the recently duplicated genes appear to be involved in various forms of environmental response; in particular, many of them encode membrane and secreted proteins.ConclusionsThe results of this analysis indicate that recently duplicated paralogs evolve faster than orthologs with the same level of divergence and similar functions, but apparently do not experience a phase of neutral evolution. We hypothesize that gene duplications that persist in an evolving lineage are beneficial from the time of their origin, due primarily to a protein dosage effect in response to variable environmental conditions; duplications are likely to give rise to new functions at a later phase of their evolution once a higher level of divergence is reached.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome

Alexis Dufresne; Marcel Salanoubat; Frédéric Partensky; François Artiguenave; Ilka M. Axmann; Valérie Barbe; Simone Duprat; Michael Y. Galperin; Eugene V. Koonin; Florence Le Gall; Kira S. Makarova; Martin Ostrowski; Sophie Oztas; Catherine Robert; Igor B. Rogozin; David J. Scanlan; Nicole Tandeau de Marsac; Jean Weissenbach; Patrick Wincker; Yuri I. Wolf; Wolfgang R. Hess

Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. Together with the 1.66-Mbp genome of P. marinus MED4, the genome of P. marinus SS120 is one of the two smallest genomes of a photosynthetic organism known to date. It lacks many genes that are involved in photosynthesis, DNA repair, solute uptake, intermediary metabolism, motility, phototaxis, and other functions that are conserved among other cyanobacteria. Systems of signal transduction and environmental stress response show a particularly drastic reduction in the number of components, even taking into account the small size of the SS120 genome. In contrast, housekeeping genes, which encode enzymes of amino acid, nucleotide, cofactor, and cell wall biosynthesis, are all present. Because of its remarkable compactness, the genome of P. marinus SS120 might approximate the minimal gene complement of a photosynthetic organism.


Current Biology | 2003

Remarkable Interkingdom Conservation of Intron Positions and Massive, Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution

Igor B. Rogozin; Yuri I. Wolf; Alexander V. Sorokin; Boris Mirkin; Eugene V. Koonin

Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.


Nature Immunology | 2001

Somatic mutation hotspots correlate with DNA polymerase |[eta]| error spectrum

Igor B. Rogozin; Youri I. Pavlov; Katarzyna Bebenek; Toshiro Matsuda; Thomas A. Kunkel

Mutational spectra analysis of 15 immunoglobulin genes suggested that consensus motifs RGYW and WA were universal descriptors of somatic hypermutation. Highly mutable sites, “hotspots”, that matched WA were preferentially found in one DNA strand and RGYW hotspots were found in both strands. Analysis of base-substitution hotspots in DNA polymerase error spectra showed that 33 of 36 hotspots in the human polymerase η spectrum conformed to the WA consensus. This and four other characteristics of polymerase η substitution specificity suggest that errors introduced by this enzyme during synthesis of the nontranscribed DNA strand in variable regions may contribute to strand-specific somatic hypermutagenesis of immunoglobulin genes at A-T base pairs.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation

Jizhong Zhou; Marina V. Omelchenko; Alex S. Beliaev; Amudhan Venkateswaran; Julia Stair; Liyou Wu; Dorothea K. Thompson; Dong Xu; Igor B. Rogozin; Elena K. Gaidamakova; Min Zhai; Kira S. Makarova; Eugene V. Koonin; Michael J. Daly

Deinococcus radiodurans R1 (DEIRA) is a bacterium best known for its extreme resistance to the lethal effects of ionizing radiation, but the molecular mechanisms underlying this phenotype remain poorly understood. To define the repertoire of DEIRA genes responding to acute irradiation (15 kGy), transcriptome dynamics were examined in cells representing early, middle, and late phases of recovery by using DNA microarrays covering ≈94% of its predicted genes. At least at one time point during DEIRA recovery, 832 genes (28% of the genome) were induced and 451 genes (15%) were repressed 2-fold or more. The expression patterns of the majority of the induced genes resemble the previously characterized expression profile of recA after irradiation. DEIRA recA, which is central to genomic restoration after irradiation, is substantially up-regulated on DNA damage (early phase) and down-regulated before the onset of exponential growth (late phase). Many other genes were expressed later in recovery, displaying a growth-related pattern of induction. Genes induced in the early phase of recovery included those involved in DNA replication, repair, and recombination, cell wall metabolism, cellular transport, and many encoding uncharacterized proteins. Collectively, the microarray data suggest that DEIRA cells efficiently coordinate their recovery by a complex network, within which both DNA repair and metabolic functions play critical roles. Components of this network include a predicted distinct ATP-dependent DNA ligase and metabolic pathway switching that could prevent additional genomic damage elicited by metabolism-induced free radicals.


BMC Evolutionary Biology | 2001

Genome trees constructed using five different approaches suggest new major bacterial clades

Yuri I. Wolf; Igor B. Rogozin; Nick V. Grishin; Roman L. Tatusov; Eugene V. Koonin

BackgroundThe availability of multiple complete genome sequences from diverse taxa prompts the development of new phylogenetic approaches, which attempt to incorporate information derived from comparative analysis of complete gene sets or large subsets thereof. Such attempts are particularly relevant because of the major role of horizontal gene transfer and lineage-specific gene loss, at least in the evolution of prokaryotes.ResultsFive largely independent approaches were employed to construct trees for completely sequenced bacterial and archaeal genomes: i) presence-absence of genomes in clusters of orthologous genes; ii) conservation of local gene order (gene pairs) among prokaryotic genomes; iii) parameters of identity distribution for probable orthologs; iv) analysis of concatenated alignments of ribosomal proteins; v) comparison of trees constructed for multiple protein families. All constructed trees support the separation of the two primary prokaryotic domains, bacteria and archaea, as well as some terminal bifurcations within the bacterial and archaeal domains. Beyond these obvious groupings, the trees made with different methods appeared to differ substantially in terms of the relative contributions of phylogenetic relationships and similarities in gene repertoires caused by similar life styles and horizontal gene transfer to the tree topology. The trees based on presence-absence of genomes in orthologous clusters and the trees based on conserved gene pairs appear to be strongly affected by gene loss and horizontal gene transfer. The trees based on identity distributions for orthologs and particularly the tree made of concatenated ribosomal protein sequences seemed to carry a stronger phylogenetic signal. The latter tree supported three potential high-level bacterial clades,: i) Chlamydia-Spirochetes, ii) Thermotogales-Aquificales (bacterial hyperthermophiles), and ii) Actinomycetes-Deinococcales-Cyanobacteria. The latter group also appeared to join the low-GC Gram-positive bacteria at a deeper tree node. These new groupings of bacteria were supported by the analysis of alternative topologies in the concatenated ribosomal protein tree using the Kishino-Hasegawa test and by a census of the topologies of 132 individual groups of orthologous proteins. Additionally, the results of this analysis put into question the sister-group relationship between the two major archaeal groups, Euryarchaeota and Crenarchaeota,and suggest instead that Euryarchaeota might be a paraphyletic group with respect to Crenarchaeota.ConclusionsWe conclude that, the extensive horizontal gene flow and lineage-specific gene loss notwithstanding, extension of phylogenetic analysis to the genome scale has the potential of uncovering deep evolutionary relationships between prokaryotic lineages.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens

Alexei I. Slesarev; Katja V. Mezhevaya; Kira S. Makarova; Nikolai Polushin; Ov Shcherbinina; Vera V. Shakhova; Galina I. Belova; L. Aravind; Darren A. Natale; Igor B. Rogozin; Roman L. Tatusov; Yuri I. Wolf; Karl O. Stetter; Andrei Malykh; Eugene V. Koonin; Sergei A. Kozyavkin

We have determined the complete 1,694,969-nt sequence of the GC-rich genome of Methanopyrus kandleri by using a whole direct genome sequencing approach. This approach is based on unlinking of genomic DNA with the ThermoFidelase version of M. kandleri topoisomerase V and cycle sequencing directed by 2′-modified oligonucleotides (Fimers). Sequencing redundancy (3.3×) was sufficient to assemble the genome with less than one error per 40 kb. Using a combination of sequence database searches and coding potential prediction, 1,692 protein-coding genes and 39 genes for structural RNAs were identified. M. kandleri proteins show an unusually high content of negatively charged amino acids, which might be an adaptation to the high intracellular salinity. Previous phylogenetic analysis of 16S RNA suggested that M. kandleri belonged to a very deep branch, close to the root of the archaeal tree. However, genome comparisons indicate that, in both trees constructed using concatenated alignments of ribosomal proteins and trees based on gene content, M. kandleri consistently groups with other archaeal methanogens. M. kandleri shares the set of genes implicated in methanogenesis and, in part, its operon organization with Methanococcus jannaschii and Methanothermobacter thermoautotrophicum. These findings indicate that archaeal methanogens are monophyletic. A distinctive feature of M. kandleri is the paucity of proteins involved in signaling and regulation of gene expression. Also, M. kandleri appears to have fewer genes acquired via lateral transfer than other archaea. These features might reflect the extreme habitat of this organism.


Science | 2005

Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate

Matthew N. Alder; Igor B. Rogozin; Lakshminarayan M. Iyer; Galina V. Glazko; Max D. Cooper; Zeev Pancer

Instead of the immunoglobulin-type antigen receptors of jawed vertebrates, jawless fish have variable lymphocyte receptors (VLRs), which consist of leucine-rich repeat (LRR) modules. Somatic diversification of the VLR gene is shown here to occur through a multistep assembly of LRR modules randomly selected from a large bank of flanking cassettes. The predicted concave surface of the VLR is lined with hypervariable positively selected residues, and computational analysis suggests a repertoire of about 1014 unique receptors. Lamprey immunized with anthrax spores responded with the production of soluble antigen-specific VLRs. These findings reveal that two strikingly different modes of antigen recognition through rearranged lymphocyte receptors have evolved in the jawless and jawed vertebrates.


Nature Immunology | 2007

Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase

Igor B. Rogozin; Lakshminarayan M. Iyer; Lizhi Liang; Galina V. Glazko; Victoria G Liston; Youri I. Pavlov; L. Aravind; Zeev Pancer

The variable lymphocyte receptors (VLRs) of jawless vertebrates such as lamprey and hagfish are composed of highly diverse modular leucine-rich repeats. Each lymphocyte assembles a unique VLR by rearrangement of the germline gene. In the lamprey genome, we identify here about 850 distinct cassettes encoding leucine-rich repeat modules that serve as sequence templates for the hypervariable VLR repertoires. The data indicate a gene conversion–like process in VLR diversification. Genomic analysis suggested a link between the VLR and platelet glycoprotein receptors. Lamprey lymphocytes express two putative deaminases of the AID-APOBEC family that may be involved in VLR diversification, as indicated by in vitro mutagenesis and recombination assays. Vertebrate acquired immunity could have therefore originated from lymphocyte receptor diversification by an ancestral AID-like DNA cytosine deaminase.

Collaboration


Dive into the Igor B. Rogozin's collaboration.

Top Co-Authors

Avatar

Eugene V. Koonin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yuri I. Wolf

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Youri I. Pavlov

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kira S. Makarova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Galina V. Glazko

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Vladimir N. Babenko

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liran Carmel

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Eugenia Poliakov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexander V. Sverdlov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge