Igor Bazov
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor Bazov.
Addiction Biology | 2011
Malik Mumtaz Taqi; Igor Bazov; Hiroyuki Watanabe; Donna Sheedy; Clive Harper; Kanar Alkass; Henrik Druid; Parri Wentzel; Fred Nyberg; Tatjana Yakovleva; Georgy Bakalkin
The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single‐nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG‐SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl‐PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol‐dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG‐SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl‐PFC of alcoholics, methylation levels of the C, non‐risk variant of 3′‐untranslated region (3′‐UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA‐binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism‐associated PDYN 3′‐UTR CpG‐SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non‐risk allele(s) to develop alcohol dependence.
American Journal of Human Genetics | 2010
Georgy Bakalkin; Hiroyuki Watanabe; Justyna Jezierska; Cloë Depoorter; Corien C. Verschuuren-Bemelmans; Igor Bazov; Konstantin A. Artemenko; Tatjana Yakovleva; Dennis Dooijes; Bart P. van de Warrenburg; Roman A. Zubarev; Berry Kremer; Pamela E. Knapp; Kurt F. Hauser; Cisca Wijmenga; Fred Nyberg; Richard J. Sinke; Dineke S. Verbeek
Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.
PLOS ONE | 2008
Nazira El-Hage; Annadora J. Bruce-Keller; Tatiana Yakovleva; Igor Bazov; Georgy Bakalkin; Pamela E. Knapp; Kurt F. Hauser
Astroglia are key cellular sites where opiate drug signals converge with the proinflammatory effects of HIV-1 Tat signals to exacerbate HIV encephalitis. Despite this understanding, the molecular sites of convergence driving opiate-accelerated neuropathogenesis have not been deciphered. We therefore explored potential points of interaction between the signaling pathways initiated by HIV-1 Tat and opioids in striatal astrocytes. Profiling studies screening 152 transcription factors indicated that the nuclear factor-kappa B (NF-κB) subunit, c-Rel, was a likely candidate for Tat or Tat plus opiate-induced increases in cytokine and chemokine production by astrocytes. Pretreatment with the NF-κB inhibitor parthenolide provided evidence that Tat±morphine-induced release of MCP-1, IL-6 and TNF-α by astrocytes is NF-κB dependent. The nuclear export inhibitor, leptomycin B, blocked the nucleocytoplasmic shuttling of NF-κB; causing p65 (RelA) accumulation in the nucleus, and significantly attenuated cytokine production in Tat±morphine exposed astrocytes. Similarly, chelating intracellular calcium ([Ca2+]i) blocked Tat±morphine-evoked MCP-1 and IL-6 release, while artificially increasing the concentration of extracellular Ca2+ reversed this effect. Taken together, these results demonstrate that: 1) exposure to Tat±morphine is sufficient to activate NF-κB and cytokine production, 2) the release of MCP-1 and IL-6 by Tat±morphine are highly Ca2+-dependent, while TNF-α appears to be less affected by the changes in [Ca2+]i, and 3) in the presence of Tat, exposure to opiates augments Tat-induced NF-κB activation and cytokine release through a Ca2+-dependent pathway.
PLOS ONE | 2007
Anna Ökvist; Sofia Johansson; Alexander Kuzmin; Igor Bazov; Roxana Merino-Martinez; Igor Ponomarev; R. Dayne Mayfield; R. Adron Harris; Donna Sheedy; Therese Garrick; Clive Harper; Yasmin L. Hurd; Lars Terenius; Thomas J. Ekström; Georgy Bakalkin; Tatjana Yakovleva
Background Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.
Addiction Biology | 2013
Igor Bazov; Olga Kononenko; Hiroyuki Watanabe; Vesna Kuntić; Daniil Sarkisyan; Malik Mumtaz Taqi; Muhammad Zubair Hussain; Fred Nyberg; Tatjana Yakovleva; Georgy Bakalkin
The endogenous opioid system (EOS) plays a critical role in addictive processes. Molecular dysregulations in this system may be specific for different stages of addiction cycle and neurocircuitries involved and therefore may differentially contribute to the initiation and maintenance of addiction. Here we evaluated whether the EOS is altered in brain areas involved in cognitive control of addiction including the dorsolateral prefrontal cortex (dl‐PFC), orbitofrontal cortex (OFC) and hippocampus in human alcohol‐dependent subjects. Levels of EOS mRNAs were measured by quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR), and levels of dynorphins by radioimmunoassay (RIA) in post‐mortem specimens obtained from 14 alcoholics and 14 controls. Prodynorphin mRNA and dynorphins in dl‐PFC, κ‐opioid receptor mRNA in OFC and dynorphins in hippocampus were up‐regulated in alcoholics. No significant changes in expression of proenkephalin, and µ‐ and δ‐opioid receptors were evident; pro‐opiomelanocortin mRNA levels were below the detection limit. Activation of the κ‐opioid receptor by up‐regulated dynorphins in alcoholics may underlie in part neurocognitive dysfunctions relevant for addiction and disrupted inhibitory control.
Journal of Neurochemistry | 2006
Florence Merg; Dominique Filliol; Ivan Usynin; Igor Bazov; Niklas Bark; Yasmin L. Hurd; Tatjana Yakovleva; Brigitte L. Kieffer; Georgy Bakalkin
The diversity of peptide ligands for a particular receptor may provide a greater dynamic range of functional responses, while maintaining selectivity in receptor activation. Dynorphin A (Dyn A), and dynorphin B (Dyn B) are endogenous opioid peptides that activate the κ‐opioid receptor (KOR). Here, we characterized interactions of big dynorphin (Big Dyn), a 32‐amino acid prodynorphin‐derived peptide consisting of Dyn A and Dyn B, with human KOR, μ‐ (hMOR) and δ‐ (hDOR) opioid receptors and opioid receptor‐like receptor 1 (hORL1) expressed in cells transfected with respective cDNA. Big Dyn and Dyn A demonstrated roughly similar affinity for binding to hKOR that was higher than that of Dyn B. Dyn A was more selective for hKOR over hMOR, hDOR and hORL1 than Big Dyn, while Dyn B demonstrated low selectivity. In contrast, Big Dyn activated G proteins through KOR with much greater potency, efficacy and selectivity than other dynorphins. There was no correlation between the rank order of the potency for the KOR‐mediated activation of G proteins and the binding affinity of dynorphins for KOR. The rank of the selectivity for the activation of G proteins through hKOR and of the binding to this receptor also differed. Immunoreactive Big Dyn was detected using the combination of radioimmunoassay (RIA) and HPLC in the human nucleus accumbens, caudate nucleus, hippocampus and cerebrospinal fluid (CSF) with the ratio of Big Dyn and Dyn B being approximately 1 : 3. The presence in the brain implies that Big Dyn, along with other dynorphins, is processed from prodynorphin and secreted from neurons. Collectively, the high potency and efficacy and the relative abundance suggest that Big Dyn may play a role in the KOR‐mediated activation of G proteins.
The FASEB Journal | 2006
Tatiana Yakovleva; Igor Bazov; Gvido Cebers; Zoya Marinova; Yuko Hara; Aisha Siddiqah Ahmed; Mila Vlaskovska; Björn Johansson; Ute Hochgeschwender; Indrapal N. Singh; Annadora J. Bruce-Keller; Yasmin L. Hurd; Takeshi Kaneko; Lars Terenius; Tomas J. Ekström; Kurt F. Hauser; Virginia M. Pickel; Georgy Bakalkin
The classical view postulates that neuropeptide precursors in neurons are processed into mature neuropeptides in the somatic trans‐Golgi network (TGN) and in secretory vesicles during axonal transport. Here we show that prodynorphin (PDYN), precursor to dynorphin opioid peptides, is predominantly located in axon terminals and dendrites in hippocampal and striatal neurons. The molar content of unprocessed PDYN was much greater than that of dynorphin peptides in axon terminals of PDYN‐containing neurons projecting to the CA3 region of the hippocampus and in the striatal projections to the ventral tegmental area. Electron microscopy showed coexistence of PDYN and dynorphins in the same axon terminals with occasional codistribution in individual dense core vesicles. Thus, the precursor protein is apparently stored at presynaptic sites. In comparison with the hippocampus and striatum, PDYN and dynorphins were more equally distributed between neuronal somata and processes in the amygdala and cerebral cortex, suggesting regional differences in the regulation of trafficking and processing of the precursor protein. Potassium‐induced depolarization activated PDYN processing and secretion of opioid peptides in neuronal cultures and in a model cell line. Regulation of PDYN storage and processing at synapses by neuronal activity or extracellular stimuli may provide a local mechanism for regulation of synaptic transmission. —Yakovleva, T., Bazov, I., Cebers, G., Marinova, Z., Hara, H., Ahmed, A., Vlaskovska, M., Johansson, B., Hochgeschwender, U., Singh, I. N., Bruce‐Keller, A. J., Hurd, Y. L., Kaneko, T., Terenius, L., Ekström, T. J., Hauser, K. F., Pickel, V. M., Bakalkin, G. Prodynorphin storage and processing in axon terminals and dendrites FASEB J. 20, E1430 –E1440 (2006)
Brain Behavior and Immunity | 2011
Tatjana Yakovleva; Igor Bazov; Hiroyuki Watanabe; Kurt F. Hauser; Georgy Bakalkin
Alcohol dependence and associated cognitive impairment appear to result from maladaptive neuroplasticity in response to chronic alcohol consumption, neuroinflammation and neurodegeneration. The inherent stability of behavioral alterations associated with the addicted state suggests that transcriptional and epigenetic mechanisms are operative. NF-κB transcription factors are regulators of synaptic plasticity and inflammation, and responsive to a variety of stimuli including alcohol. These factors are abundant in the brain where they have diverse functions that depend on the composition of the NF-κB complex and cellular context. In neuron cell bodies, NF-κB is constitutively active, and involved in neuronal injury and neuroprotection. However, at the synapse, NF-κB is present in a latent form and upon activation is transported to the cell nucleus. In glia, NF-κB is inducible and regulates inflammatory processes that exacerbate alcohol-induced neurodegeneration. Animal studies demonstrate that acute alcohol exposure transiently activates NF-κB, which induces neuroinflammatory responses and neurodegeneration. Postmortem studies of brains of human alcoholics suggest that repeated cycles of alcohol consumption and withdrawal cause adaptive changes in the NF-κB system that may permit the system to better tolerate excessive stimulation. This type of tolerance, ensuring a low degree of responsiveness to applied stimuli, apparently differs from that in the immune system, and may represent a compensatory response that protects brain cells against alcohol neurotoxicity. This view is supported by findings showing preferential downregulation of pro-apoptotic gene expression in the affected brain areas in human alcoholics. Although further verification is needed, we speculate that NF-κB-driven neuroinflammation and disruption to neuroplasticity play a significant role in regulating alcohol dependence and cognitive impairment.
The FASEB Journal | 2005
Andrej Nikoshkov; Yasmin L. Hurd; Tatiana Yakovleva; Igor Bazov; Zoya Marinova; Gvido Cebers; Natalia Pasikova; Anna Gharibyan; Lars Terenius; Georgy Bakalkin
Transcription from multiple promoters along with alternative mRNA splicing constitutes the basis for cell‐specific gene expression and mRNA and protein diversity. The prodynorphin gene (PDYN) gives rise to prodynorphin (PDYN), precursor to dynorphin opioid peptides that regulate diverse physiological functions and are implicated in various neuropsychiatric disorders. Here, we characterized PDYN transcripts and proteins in the adult human brain and studied PDYN processing and intracellular localization in model cell lines. Seven PDYN mRNAs were identified in the human brain; two of the transcripts, FL1 and FL2, encode the full‐length PDYN. The dominant, FL1 transcript shows high expression in limbic‐related structures such as the nucleus accumbens and amygdala. The second, FL2 transcript is only expressed in few brain structures such as the claustrum and hypothalamus. FL‐PDYN was identified for the first time in the brain as the dominant PDYN protein product. Three novel PDYNs expressed from spliced or truncated PDYN transcripts either lack a central segment but are still processed into dynorphins, or are translated into N‐terminally truncated proteins. One truncated PDYN is located in the cell nucleus, suggesting a novel nonopioid function for this protein. The complexity of PDYN expression and diversity of its protein products may be relevant for diverse levels of plasticity in adaptive responses for the dynorphin system.
Brain Research | 2011
Malik Mumtaz Taqi; Igor Bazov; Hiroyuki Watanabe; Fred Nyberg; Tatjana Yakovleva; Georgy Bakalkin
Single nucleotide polymorphism (rs1997794) in promoter of the prodynorphin gene (PDYN) associated with alcohol-dependence may impact PDYN transcription in human brain. To address this hypothesis we analyzed PDYN mRNA levels in the dorsolateral prefrontal cortex (dl-PFC) and hippocampus, both involved in cognitive control of addictive behavior and PDYN promoter SNP genotype in alcohol-dependent and control human subjects. The principal component analysis suggested that PDYN expression in the dl-PFC may be related to alcoholism, while in the hippocampus may depend on the genotype. We also demonstrated that the T, low risk SNP allele resides within noncanonical AP-1-binding element that may be targeted by JUND and FOSB proteins, the dominant AP-1 constituents in the human brain. The T to C transition abrogated AP-1 binding. The impact of genetic variations on PDYN transcription may be relevant for diverse adaptive responses of this gene to alcohol.