Igor C. S. Cruz
Rio de Janeiro State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor C. S. Cruz.
Biological Invasions | 2017
Joel C. Creed; Douglas Fenner; Paul W. Sammarco; Stephen D. Cairns; Kátia Cristina Cruz Capel; Andrea O. R. Junqueira; Igor C. S. Cruz; Ricardo J. Miranda; Lélis Carlos-Junior; Marcelo Checoli Mantelatto; Simone Siag Oigman-Pszczol
In this review, we describe the history, pathways and vectors of the biological invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world. In order to do so we consulted previous reports in the literature and also compiled new unpublished information on the distribution of the three species of Tubastraea which have been reported as non indigenous species, both within their native and non-native ranges and also on vectors, and where cryptogenic. We combine these data with historical aspects of marine vectors in order to get insights into how Tubastraea species have successfully spread around the world, established and invaded and where future studies would be best focused. T. coccinea and T. tagusensis are recognized as being highly invasive and are causing significant environmental, economic, and social impacts requiring management actions. The third species, T. micranthus so far only reported outside its native range on oil platforms, may have similar potential for negative impact. The vectors of introduction of Tubastraea may have changed throughout history and the biological invasion of these invasive corals may reflect changing practices, demands and legislation in shipping activities over the years. Today it is clear that these corals are fouling organisms strongly associated with oil and gas platforms worldwide which are thus primary vectors for new introductions.
PLOS ONE | 2015
Igor C. S. Cruz; Miguel Loiola; Tiago Albuquerque; Rodrigo Siqueira Reis; José de Anchieta C. C. Nunes; James Davis Reimer; Masaru Mizuyama; Ruy Kenji Papa de Kikuchi; Joel C. Creed
Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated.
PLOS ONE | 2014
Rui J.M. Rocha; Ana B. Silva; M. Helena Vaz Fernandes; Igor C. S. Cruz; Rui Rosa; Ricardo Calado
The morphological plasticity of scleractinian corals can be influenced by numerous factors in their natural environment. However, it is difficult to identify in situ the relative influence of a single biotic or abiotic factor, due to potential interactions between them. Light is considered as a major factor affecting coral skeleton morphology, due to their symbiotic relation with photosynthetic zooxanthellae. Nonetheless, most studies addressing the importance of light on coral morphological plasticity have focused on photosynthetically active radiation (PAR) intensity, with the effect of light spectra remaining largely unknown. The present study evaluated how different light spectra affect the skeleton macro- and microstructures in two coral species (Acropora formosa sensu Veron (2000) and Stylophora pistillata) maintained under controlled laboratory conditions. We tested the effect of three light treatments with the same PAR but with a distinct spectral emission: 1) T5 fluorescent lamps with blue emission; 2) Light Emitting Diodes (LED) with predominantly blue emission; and 3) Light Emitting Plasma (LEP) with full spectra emission. To exclude potential bias generated by genetic variability, the experiment was performed with clonal fragments for both species. After 6 months of experiment, it was possible to detect in coral fragments of both species exposed to different light spectra significant differences in morphometry (e.g., distance among corallites, corallite diameter, and theca thickness), as well as in the organization of their skeleton microstructure. The variability found in the skeleton macro- and microstructures of clonal organisms points to the potential pitfalls associated with the exclusive use of morphometry on coral taxonomy. Moreover, the identification of a single factor influencing the morphology of coral skeletons is relevant for coral aquaculture and can allow the optimization of reef restoration efforts.
Marine and Freshwater Research | 2016
Miguel Costa Leal; Igor C. S. Cruz; Carlos Rafael Borges Mendes; Ricardo Calado; Ruy Kenji Papa de Kikuchi; Rui Rosa; Amadeu M.V.M. Soares; João Serôdio; Rui J.M. Rocha
Intertidal environments are boundaries between marine and terrestrial ecosystems that are subject to rapid fluctuations across tidal cycles. This study investigates, for the first time, the photobiology of symbiotic zoanthids inhabiting different tidal environments: subtidal, intertidal pools and intertidal areas exposed to air during low tide. More specifically, we assessed the photochemical efficiency, Symbiodinium density and photosynthetic pigments profile of Zoanthus sociatus during low tide. Photochemical efficiency was lower and cell density higher in air exposed zoanthids. The profile of photosynthetic pigments also varied significantly among tidal habitats, particularly photoprotective pigments such as dinoxanthin and diadinoxanthin. Differences were also observed for the pigment content per cell, but the proportion of particular pigments (peridinin/chlorophyll-a and diatoxanthin+diadinoxanthin/chlorophyll-a) remained stable. Results suggest that aerial exposure conditions induce reversible downregulation of photochemical processes but no photophysiological impairment or bleaching. These findings provide a baseline for future studies addressing the prevalence of these overlooked cnidarians in environmentally dynamic reef flats.
Revista Virtual de Química | 2012
Francisco Barros; Patrícia C. Costa; Igor C. S. Cruz; Dante Luís Silva Mariano; Ricardo J. Miranda
Benthos are organisms, animals or plants, that live in direct relationship with the bottom. Benthic organisms have great ecological and economic importance. Several marine and coastal ecosystems such as mangroves, coral reefs, salt marshes and estuaries have an important benthic component, supporting a great biological diversity and providing a lot of services (e.g. refuge, spawning sites, feeding sites, breeding sites and coastline protection). Chemical and physical variables can strongly influence benthic organisms because it controls a great part of the environmental conditions in which a species can live. Furthermore, changes in the composition and or on the abundance of benthic species may indicate human impacts. Here we present the main characteristics of important benthic habitats of the Todos os Santos Bay (TSB), contextualizes some results of the TSB Project and discuss impacts on mangroves and coral reefs on different spatial scales. Despite the impacts, many of the benthic habitats in the TSB are still in a good conservation status and fully developing important ecological, economic and social functions. It is strongly suggested that a precise survey to map all benthic habitats in the TSB must be done and also the maintenance and creation of long term ecological monitoring programs.
PeerJ | 2018
Leonardo M. Durante; Igor C. S. Cruz; Tito Monteiro da Cruz Lotufo
Palythoa caribaeorum is a zoanthid often dominant in shallow rocky environments along the west coast of the Atlantic Ocean, from the tropics to the subtropics. This species has high environmental tolerance and is a good space competitor in reef environments. Considering current and future scenarios in the global climate regime, this study aimed to model and analyze the distribution of P. caribaeorum, generating maps of potential distribution for the present and the year 2100. The distribution was modeled using maximum entropy (Maxent) based on 327 occurrence sites retrieved from the literature. Calcite concentration, maximum chlorophyll-a concentration, salinity, pH, and temperature range yielded a model with the smallest Akaike information criterion (2649.8), and were used in the present and future distribution model. Data from the HadGEM2-ES climate model were used to generate the projections for the year 2100. The present distribution of P. caribaeorum shows that parts of the Brazilian coast, Caribbean Sea, and Florida are suitable regions for the species, as they are characterized by high salinity and pH and small temperature variation. An expansion of the species’ distribution was forecast northward under mild climate scenarios, while a decrease of suitable areas was forecast in the south. In the climate scenario with the most intense changes, P. caribaeorum would lose one-half of its suitable habitats, including the northernmost and southernmost areas of its distribution. The Caribbean Sea and northeastern Brazil, as well as other places under the influence of coastal upwellings, may serve as potential havens for this species.
Marine Pollution Bulletin | 2018
Igor C. S. Cruz; Linda G. Waters; Ruy Kenji Papa de Kikuchi; Zelinda Margarida de Andrade Nery Leão; Alexander Turra
Phase shift, resulting from coral reef degradation, has been frequently recorded on reefs in optimal conditions, while marginal reefs were considered more resistant due to few records. Noting the lack of marginal reef phase shift studies, we quantitatively assessed their geographic extent in the Southwest Atlantic. Using metadata and a calculated phase shift index, we identified phase shifts from corals to both zoanthid and macroalgal dominance. Positive correlations existed between phase shift and local human impacts for zoanthids: proximity to human populations >100,000 inhabitants, urbanized surfaces and dredged ports and a negative relationship to the endurance of SST >1 °C above normal. Macroalgal shifts positively correlated to ports and urbanized surfaces, higher latitudes and shore proximity, indicating a possible link to nutrient runoff. The high frequency of these phase shifts suggests greater degradation than reported for Caribbean reefs, suggesting that marginal reefs do not have higher natural resistance to human impacts.
Marine Environmental Research | 2018
Inês C. Rosa; Rui J.M. Rocha; Igor C. S. Cruz; Ana Lopes; Natália Menezes; Narcisa M. Bandarra; Ruy Kenji Papa de Kikuchi; João Serôdio; Amadeu M.V.M. Soares; Rui Rosa
Fluctuations of environmental factors in intertidal habitats can disrupt the trophic balance of mixotrophic cnidarians. We investigated the effect of tidal environments (subtidal, tidal pools and emerged areas) on fatty acid (FA) content of Zoanthus sociatus and Siderastrea stellata. Effect on photophysiology was also accessed as an autotrophy proxy. There was a general tendency of a lower percentage of zooplankton-associated FAs in colonies from emerged areas or tidal pools when compared with colonies from the subtidal environment. Moreover, tidal environment significantly affected the photophysiology of both species. Colonies from the subtidal generally showed lower values of α, ETRmax and Ek when compared with their conspecifics from tidal pools or emerged areas. However, the absence of consistent patterns in Fv/Fm and in dinoflagellate-associated FAs, suggest that these corals are well adapted to intertidal conditions. This suggests that intertidal pressures may disturb the trophic balance, mainly by affecting heterotrophy of these species.
Journal of Proteomics | 2018
Igor C. S. Cruz; Eduardo Esteves; Mónica Fernandes; Nuno Rosa; Maria José Correia; Joel P. Arrais; Marlene Barros
The value of the molecular information obtained from saliva is dependent on the use of in vitro and in silico techniques. The main proteins of saliva when separated by capillary electrophoresis enable the establishment of individual profiles with characteristic patterns reflecting each individual phenotype. Different physiological or pathological conditions may be identified by specific protein profiles. The association of each profile to the particular protein composition provides clues as to which biological processes are compromised in each situation. Patient stratification according to different phenotypes often within a particular disease spectrum is especially important for the management of individuals carrying multiple diseases and requiring personalized interventions. In this work we present the SalivaPRINT Toolkit, which enables the analysis of protein profile patterns and patient phenotyping. Additionally, the SalivaPRINT Toolkit allows the identification of molecular weight ranges altered in a particular condition and therefore potentially involved in the underlying dysregulated mechanisms. This tutorial introduces the use of the SalivaPRINT Toolkit command line interface (https://github.com/salivatec/SalivaPRINT) as an independent tool for electrophoretic protein profile evaluation. It provides a detailed overview of its functionalities, illustrated by the application to the analysis of profiles obtained from a healthy population versus a population affected with inflammatory conditions. BIOLOGICAL SIGNIFICANCE We present SalivaPRINT, which serves as a patient characterization tool to identify molecular weights related with particular conditions and, from there, find proteins, which may be involved in the underlying dysregulated cellular mechanisms. The proposed analysis strategy has the potential to boost personalized diagnosis. To our knowledge this is the first independent tool for electrophoretic protein profile evaluation and is crucial when a large number of complex electrophoretic profiles needs to be compared and classified.
Marine Pollution Bulletin | 2017
Miguel Costa Leal; Rui J.M. Rocha; Jaime M. Anaya-Rojas; Igor C. S. Cruz; Christine Ferrier-Pagès
Zoanthids are conspicuous and abundant members of intertidal environments, where they are exposed to large environmental fluctuations and subject to increasing loads of anthropogenic nutrients. Here we assess the trophic ecology and stoichiometric consequences of nutrient loading for symbiotic zoanthids inhabiting different intertidal habitats. More specifically, we analysed the stable isotope signature (δ13C and δ15N), elemental composition (C, N and P) and stoichiometry (C:N, C:P, N:P) of Zoanthus sociatus differently exposed to nutrification. Results suggest that autotrophy is the main feeding mode of zoanthids and that the effect water nutrient content differently affects the elemental phenotype of zoanthids depending on tidal habitat. Additionally, habitat effects on Z. sociatus P-related stoichiometric traits highlight functional differences likely associated with variation in Symbiodinium density. These findings provide an innovative approach to assess how cnidarian-dinoflagellate symbioses response to ecosystem changes in environmentally dynamic reef flats, particularly nutrient loading.
Collaboration
Dive into the Igor C. S. Cruz's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputs