Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor Matushansky is active.

Publication


Featured researches published by Igor Matushansky.


Cancer Letters | 2009

Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell?

Elizabeth Charytonowicz; Carlos Cordon-Cardo; Igor Matushansky; Melanie Ziman

Alveolar rhabdomyosarcoma (ARMS) is a pediatric sarcoma that typically occurs in older children predominantly arising in the trunk and extremities, and exhibits a worse prognosis than other types of rhabdomyosarcomas. Most ARMS tumors have t(2; 13) or t(1; 13) translocations, involving PAX3-FKHR and PAX7-FKHR fusion genes, respectively. These genetic events result in a molecular gain of function of the fusion protein which is proposed, in a yet unspecified mechanism, to perturb the differentiation of muscle progenitor cells. While a significant amount of work has been done characterizing PAX-FKHR fusion proteins in ARMS and elucidating their involvement in the sarcomagenic process, their relationship to normal skeletal muscle differentiation remains unestablished. In this manuscript we will explore a potential role for mesenchymal stem cells as the cell of origin of ARMS, and the possibility that PAX-FKHR fusion genes may commit these cells to a myogenic lineage while inhibiting terminal differentiation, thus contributing to ARMS formation. We will also review the structure and function of alternate transcripts of PAX3, PAX7, FKHR and the fusion genes PAX3-FKHR and PAX7-FKHR, and discuss the role of these genes and their downstream targets in development of ARMS. Additionally, we will review transgenic mouse models and their ability to mimic the formation of ARMS.


Molecular and Cellular Biology | 2003

PU.1 and pRB Interact and Cooperate To Repress GATA-1 and Block Erythroid Differentiation

Natasha Rekhtman; Kevin S. Choe; Igor Matushansky; Stuart Murray; Tomas Stopka; Arthur I. Skoultchi

ABSTRACT PU.1 and GATA-1 are two hematopoietic specific transcription factors that play key roles in development of the myeloid and erythroid lineages, respectively. The two proteins bind to one another and inhibit each others function in transcriptional activation and promotion of their respective differentiation programs. This mutual antagonism may be an important aspect of lineage commitment decisions. PU.1 can also act as an oncoprotein since deregulated expression of PU.1 in erythroid precursors causes erythroleukemias in mice. Studies of cultured mouse erythroleukemia cell lines indicate that one aspect of PU.1 function in erythroleukemogenesis is its ability to block erythroid differentiation by repressing GATA-1 (N. Rekhtman, F. Radparvar, T. Evans, and A. I. Skoultchi, Genes Dev. 13:1398-1411, 1999). We have investigated the mechanism of PU.1-mediated repression of GATA-1. We report here that PU.1 binds to GATA-1 on DNA. We localized the repression activity of PU.1 to a small acidic N-terminal domain that interacts with the C pocket of pRB, a well-known transcriptional corepressor. Repression of GATA-1 by PU.1 requires pRB, and pRB colocalizes with PU.1 and GATA-1 at repressed GATA-1 target genes. PU.1 and pRB also cooperate to block erythroid differentiation. Our results suggest that one of the mechanisms by which PU.1 antagonizes GATA-1 is by binding to it at GATA-1 target genes and tethering to these sites a corepressor that blocks transcriptional activity and thereby erythroid differentiation.


Oncogene | 2013

Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency based reprogramming

Xi Zhang; Filemon Dela Cruz; Melissa Terry; Fabrizio Remotti; Igor Matushansky

Pluripotent cells can be derived from various types of somatic cells by nuclear reprogramming using defined transcription factors. It is, however, unclear whether human cancer cells can be similarly reprogrammed and subsequently terminally differentiated with abrogation of tumorigenicity. Here, using sarcomas we show that human-derived complex karyotype solid tumors: (1) can be reprogrammed into a pluripotent-like state as defined by all in vitro criteria used to define pluripotent stem cells generated from somatic cells; (2) can be terminally differentiated into mature connective tissue and red blood cells; and (3) terminal differentiation is accompanied with loss of both proliferation and tumorigenicity. We go on to perform the first global DNA promoter methylation and gene expression analyses comparing human cancers to their reprogrammed counterparts and report that reprogramming/differentiation results in significant epigenetic remodeling of oncogenes and tumor suppressors, while not significantly altering the differentiation status of the reprogrammed cancer cells, in essence dedifferentiating them to a state slightly before the mesenchymal stem cell differentiation stage. Our data demonstrate that direct nuclear reprogramming can restore terminal differentiation potential to human-derived cancer cells, with simultaneous loss of tumorigenicity, without the need to revert to an embryonic state. We anticipate that our models would serve as a starting point to more fully assess how nuclear reprogramming overcomes the multitude of genetic and epigenetic aberrancies inherent in human cancers to restore normal terminal differentiation pathways. Finally, these findings suggest that nuclear reprogramming may be a broadly applicable therapeutic strategy for the treatment of cancer.


Journal of Cellular Biochemistry | 2012

Piwis and piwi-interacting RNAs in the epigenetics of cancer.

Sara Siddiqi; Igor Matushansky

An increasing body of evidence suggests that cancer cells acquire “stem‐like” epigenetic and signaling characteristics during the tumorigenic process, including global DNA hypo‐methylation, gene‐specific DNA hyper‐methylation, and small RNA deregulation. RNAs have been known to be epigenetic regulators, both in stem cells and in differentiated cells. A novel class of small RNAs, called piwi‐interacting RNAs (piRNAs), maintains genome integrity by epigenetically silencing transposons via DNA methylation, especially in germline stem cells. piRNAs interact exclusively with the Piwi family of proteins. The human Piwi ortholog, Hiwi, has been found to be aberrantly expressed in a variety of human cancers and in some, its expression correlates with poor clinical prognosis. However, there has been little investigation into the potential role that Piwi and piRNAs might play in contributing to the “stem‐like” epigenetic state of a cancer. This review will highlight the current evidence supporting the importance of Piwi and piRNAs in the epigenetics of cancer and provide a potential model for the role of Piwi and piRNAs in tumorigenesis. J. Cell. Biochem. 113: 373–380, 2012.


Expert Review of Anticancer Therapy | 2009

MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st Century.

Igor Matushansky; Elizabeth Charytonowicz; Joslyn Mills; Sara Siddiqi; Todd Hricik; Carlos Cordon-Cardo

The essence and origin of malignant fibrous histiocytoma (MFH) have been debated for now close to five decades. Originally characterized as a morphologically unique soft-tissue sarcoma subtype of unclear etiology in 1963, with a following 15 years of research only to conclude that “the issue of histogenesis [of MFH] is largely unresolvable”; it is “now regarded as synonymous with [high grade] undifferentiated pleomorphic sarcoma and essentially represents a diagnosis of exclusion”. Yet despite this apparent lack of progress, the first decade of the 21st century has seen some significant progress in terms of defining the origins of MFH. Perhaps more importantly these origins might also pave the way for novel therapies. This manuscript will highlight MFH’s troubled history, discuss recent advances, and comment as to what the coming years may promise and what further needs to be done to make sure that progress continues.


Oncogene | 2003

CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells

Igor Matushansky; Farshid Radparvar; Arthur I. Skoultchi

Cell proliferation and differentiation are highly coordinated during normal development. Many tumor cells exhibit both uncontrolled proliferation and a block to terminal differentiation. To understand the mechanisms coordinating these two processes, we have investigated the relation between cyclin-dependent kinase (CDK) activities and the block to differentiation in murine erythroleukemia (MEL) cells. We found that CDK6 (but not CDK4) is rapidly downregulated as MEL cells are induced to re-enter erythroid differentiation and that maintenance of CDK6 (but not CDK4) activity by transfection blocks differentiation. Moreover, we found that PU.1, an Ets transcription factor that is oncogenic in erythroid cells and also can block their differentiation, controls the synthesis of CDK6 mRNA. These results suggest a mechanism for coupling proliferation and the block to differentiation in these leukemic cells through the action of an oncogenic transcription factor (PU.1) on a key cell cycle regulator (CDK6). Our findings suggest that studying the relative roles of CDK6 and CDK4 in other types of malignant cells will be important in designing approaches for cell cycle inhibition and differentiation therapy in cancer.


American Journal of Pathology | 2008

A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas

Igor Matushansky; Eva Hernando; Nicholas D. Socci; Tulio Matos; Joslyn Mills; Mark A. Edgar; Gary K. Schwartz; Samuel Singer; Carlos Cordon-Cardo; Robert G. Maki

The importance of adult stem cells in the development of neoplastic diseases is becoming increasingly well appreciated. We hypothesized that sarcomas of soft tissue could be categorized by their developmental/differentiation status from stem cell to mature tissue, similar to the hematological malignancies. We conducted gene expression analyses during in vitro differentiation of human mesenchymal stem cells into adipose tissue, as a representative mature connective tissue, and identified genes whose expression changed significantly during adipogenesis. Gene clustering and distance correlation analysis allowed the assignment of a unique time point during adipogenesis that strongly correlates to each of the four major liposarcoma subtypes. Using a novel gene expression strategy, in which liposarcomas are compared to their corresponding adipocytic maturing cells, we identified a group of genes overexpressed in liposarcomas that indicate the stage of differentiation arrest, ie, sharing a similar expression profile to adipocytic cells at a corresponding stage of differentiation, and a distinct set of genes overexpressed in liposarcomas that are not found in the corresponding stage of differentiation. We propose that the latter set is enriched for candidate transformation-associated genes. Our results indicate that a degree of developmental maturity can be quantitatively assigned to solid tumors, supporting the notion that transformation of a solid tumor stem cell can occur at distinct stages of maturation.


PLOS ONE | 2012

Hiwi Mediated Tumorigenesis Is Associated with DNA Hypermethylation

Sara Siddiqi; Melissa Terry; Igor Matushansky

Expression of Piwi proteins is confined to early development and stem cells during which they suppress transposon migration via DNA methylation to ensure genomic stability. Piwis genomic protective function conflicts with reports that its human ortholog, Hiwi, is expressed in numerous cancers and prognosticates shorter survival. However, the role of Hiwi in tumorigenesis has not been examined. Here we demonstrate that (1) over-expressing Hiwi in sarcoma precursors inhibits their differentiation in vitro and generates sarcomas in vivo; (2) transgenic mice expressing Hiwi (mesodermally restricted) develop sarcomas; and (3) inducible down-regulation of Hiwi in human sarcomas inhibits growth and re-establishes differentiation. Our data indicates that Hiwi is directly tumorigenic and Hiwi-expressing cancers may be addicted to Hiwi expression. We further show that Hiwi associated DNA methylation and cyclin-dependent kinase inhibitor (CDKI) silencing is reversible along with Hiwi-induced tumorigenesis, via DNA-methyltransferase inhibitors. Our studies reveal for the first time not only a novel oncogenic role for Hiwi as a driver of tumorigenesis, but also suggest that the use of epigenetic agents may be clinically beneficial for treatment of tumors that express Hiwi. Additionally, our data showing that Hiwi-associated DNA hyper-methylation with subsequent genetic and epigenetic changes favoring a tumorigenic state reconciles the conundrum of how Hiwi may act appropriately to promote genomic integrity during early development (via transposon silencing) and inappropriately in adult tissues with subsequent tumorigenesis.


Journal of Clinical Investigation | 2012

PPARγ agonists enhance ET-743–induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma

Elizabeth Charytonowicz; Melissa Terry; Katherine Coakley; Leonid Telis; Fabrizio Remotti; Carlos Cordon-Cardo; Robert N. Taub; Igor Matushansky

Myxoid round cell liposarcoma (MRCLS) is a common liposarcoma subtype characterized by a translocation that results in the fusion protein TLS:CHOP as well as by mixed adipocytic histopathology. Both the etiology of MRCLS and the mechanism of action of TLS:CHOP remain poorly understood. It was previously shown that ET-743, an antitumor compound with an unclear mechanism of action, is highly effective in patients with MRCLS. To identify the cellular origin of MRCLS, we engineered a mouse model in which TLS:CHOP was expressed under the control of a mesodermally restricted promoter (Prx1) in a p53-depleted background. This model resembled MRCLS histologically as well as functionally in terms of its specific adipocytic differentiation-based response to ET-743. Specifically, endogenous mesenchymal stem cells (MSCs) expressing TLS:CHOP developed into MRCLS in vivo. Gene expression and microRNA analysis of these MSCs showed that they were committed to adipocytic differentiation, but unable to terminally differentiate. We also explored the method of action of ET-743. ET-743 downregulated TLS:CHOP expression, which correlated with CEBPα expression and adipocytic differentiation. Furthermore, PPARγ agonists enhanced the differentiation process initiated by ET-743. Our work highlights how clinical observations can lead to the generation of a mouse model that recapitulates human disease and may be used to develop rational treatment combinations, such as ET-743 plus PPARγ agonists, for the treatment of MRCLS.


Clinical & Translational Oncology | 2012

PAX7-FKHR fusion gene inhibits myogenic differentiation via NF-kappaB upregulation

Elizabeth Charytonowicz; Igor Matushansky; Josep Domingo-Domenech; Mireia Castillo-Martin; Marc Ladanyi; Carlos Cordon-Cardo; Mel Ziman

ObjectiveAlveolar rhabdomyosarcomas (ARMS) are characterised by a PAX3/7-FKHR translocation, which is presumed to promote a differentiation arrest in the myogenic lineage, in which setting secondary genetic events occur, resulting in sarcomagenesis. The aim of this study was to identify the mechanism by which PAX3/7-FKHR expression results in a myogenic differentiation block, as discrete from the secondary genetic events that complete the sarcomagenic process.MethodsWe performed a novel differential gene expression analysis comparing normal mesenchymal stem cells with previously generated non-tumorigenic mesenchymal stem cells expressing the PAX7-FKHR fusion gene, as well as with a known tumorigenic, PAX7-FKHR-expressing ARMS cell line, CW9019.ResultsThis novel analysis uncovered the upregulation of the NF-kappaB pathway as a function of PAX3/7-FKHR expression, but distinct from the secondary sarcomagenic process; thus implicating NF-kappaB as a mediator of the PAX3/7-FKHR differentiation block. We further show that NF-kappaB activity is upregulated in PAX7-FKHR cells when compared to parental MSCs due to upregulation of the PI3K/AKT pathway. In addition we show that NF-kappaB inhibits myogenesis via activation of cyclinD1/cdk4 complexes, which sequester MyoD1, a key myogenic transcription factor.ConclusionsOur results highlight the importance of the NF-kappaB pathway in myogenesis and sarcomagenesis and suggest that this pathway may be one of the potential therapeutic targets in the treatment of ARMS.

Collaboration


Dive into the Igor Matushansky's collaboration.

Top Co-Authors

Avatar

Arthur I. Skoultchi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Carlos Cordon-Cardo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrizio Remotti

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Filemon Dela Cruz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Terry

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge