Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor Smirnov is active.

Publication


Featured researches published by Igor Smirnov.


Nature | 2015

Structural and functional features of central nervous system lymphatic vessels.

Antoine Louveau; Igor Smirnov; Timothy J. Keyes; Jacob D. Eccles; Sherin J. Rouhani; J. David Peske; Noël C. Derecki; David Castle; James Mandell; Kevin Lee; Tajie H. Harris; Jonathan Kipnis

One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.


Journal of Clinical Investigation | 2001

Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease

Ehud Hauben; Eugenia Agranov; Amalia Gothilf; Uri Nevo; Avi Cohen; Igor Smirnov; Lawrence Steinman; Michal Schwartz

Spinal cord injury results in a massive loss of neurons, and thus of function. We recently reported that passive transfer of autoimmune T cells directed against myelin-associated antigens provides acutely damaged spinal cords with effective neuroprotection. The therapeutic time window for the passive transfer of T cells was found to be at least 1 week. Here we show that posttraumatic T cell-based active vaccination is also neuroprotective. Immunization with myelin-associated antigens such as myelin basic protein (MBP) significantly promoted recovery after spinal cord contusion injury in the rat model. To reduce the risk of autoimmune disease while retaining the benefit of the immunization, we vaccinated the rats immediately after severe incomplete spinal cord injury with MBP-derived altered peptide ligands. Immunization with these peptides resulted in significant protection from neuronal loss and thus in a reduced extent of paralysis, assessed by an open-field behavioral test. Retrograde labeling of the rubrospinal tracts and magnetic resonance imaging supported the behavioral results. Further optimization of nonpathogenic myelin-derived peptides can be expected to lead the way to the development of an effective therapeutic vaccination protocol as a strategy for the prevention of total paralysis after incomplete spinal cord injury.


Journal of Clinical Investigation | 2006

Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis

Oleg Butovsky; Gennady Landa; Gilad Kunis; Yaniv Ziv; Hila Avidan; Nadav Greenberg; Adi Schwartz; Igor Smirnov; Ayala Pollack; Steffen Jung; Michal Schwartz

The role of activated microglia (MG) in demyelinating neurodegenerative diseases such as multiple sclerosis is controversial. Here we show that high, but not low, levels of IFN-gamma (a cytokine associated with inflammatory autoimmune diseases) conferred on rodent MG a phenotype that impeded oligodendrogenesis from adult neural stem/progenitor cells. IL-4 reversed the impediment, attenuated TNF-alpha production, and overcame blockage of IGF-I production caused by IFN-gamma. In rodents with acute or chronic EAE, injection of IL-4-activated MG into the cerebrospinal fluid resulted in increased oligodendrogenesis in the spinal cord and improved clinical symptoms. The newly formed oligodendrocytes were spatially associated with MG expressing MHC class II proteins and IGF-I. These results point to what we believe to be a novel role for MG in oligodendrogenesis from the endogenous stem cell pool.


Journal of Neuroimmunology | 2003

Features of skin-coincubated macrophages that promote recovery from spinal cord injury

Yonit Bomstein; Jonathan B. Marder; Karen Vitner; Igor Smirnov; Galit Lisaey; Oleg Butovsky; Valentin Fulga; Eti Yoles

Uncontrolled inflammation is considered to exacerbate the neuronal loss that follows spinal cord trauma. However, controlled inflammation response appears to be beneficial. Skin-coincubated macrophages injected into contused spinal cord of rats resulted in improved motor recovery and reduced spinal cyst formation. The macrophages express elevated levels of cell-surface molecules CD80, CD86, CD54 and MHC-II, markers characteristic of antigen presenting cells (APCs). Additionally, skin-coincubation elevates secretion of interleukin-1 beta (IL-1 beta) and Brain-Derived Neurotrophic Factor (BDNF), and reduces secretion of tumor necrosis factor alpha (TNF-alpha). We propose that macrophages activated by skin-coincubation bolster neuroprotective immune activity in the spinal cord, making the environment less cytotoxic and less hostile to axonal regeneration.


Nature | 2016

Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour

Anthony J. Filiano; Yang Xu; Nicholas J. Tustison; Rachel Marsh; Wendy Baker; Igor Smirnov; Christopher C. Overall; Sachin P. Gadani; Stephen D. Turner; Zhiping Weng; Sayeda Najamussahar Peerzade; Hao Chen; Kevin Lee; Mark P. Beenhakker; Vladimir Litvak; Jonathan Kipnis

Immune dysfunction is commonly associated with several neurological and mental disorders. Although the mechanisms by which peripheral immunity may influence neuronal function are largely unknown, recent findings implicate meningeal immunity influencing behaviour, such as spatial learning and memory. Here we show that meningeal immunity is also critical for social behaviour; mice deficient in adaptive immunity exhibit social deficits and hyper-connectivity of fronto-cortical brain regions. Associations between rodent transcriptomes from brain and cellular transcriptomes in response to T-cell-derived cytokines suggest a strong interaction between social behaviour and interferon-γ (IFN-γ)-driven responses. Concordantly, we demonstrate that inhibitory neurons respond to IFN-γ and increase GABAergic (γ-aminobutyric-acid) currents in projection neurons, suggesting that IFN-γ is a molecular link between meningeal immunity and neural circuits recruited for social behaviour. Meta-analysis of the transcriptomes of a range of organisms reveals that rodents, fish, and flies elevate IFN-γ/JAK-STAT-dependent gene signatures in a social context, suggesting that the IFN-γ signalling pathway could mediate a co-evolutionary link between social/aggregation behaviour and an efficient anti-pathogen response. This study implicates adaptive immune dysfunction, in particular IFN-γ, in disorders characterized by social dysfunction and suggests a co-evolutionary link between social behaviour and an anti-pathogen immune response driven by IFN-γ signalling.


The Journal of Neuroscience | 2003

Vaccination with Dendritic Cells Pulsed with Peptides of Myelin Basic Protein Promotes Functional Recovery from Spinal Cord Injury

Ehud Hauben; Amalia Gothilf; Avi Cohen; Oleg Butovsky; Uri Nevo; Igor Smirnov; Eti Yoles; Solange Akselrod; Michal Schwartz

Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems. They also initiate and control the bodys response to pathogenic agents and regulate immune responses to both foreign and self-antigens. Here we show that post-injury injection of bone marrow-derived DCs pulsed with encephalitogenic or nonencephalitogenic peptides derived from myelin basic protein, when administered (either systemically or locally by injection into the lesion site) up to 12 d after the injury, led to significant and pronounced recovery from severe incomplete SCI. No significant protection was seen in DC recipients deprived of mature T-cells. Flow cytometry, RT-PCR, and proliferation assays indicated that the DCs prepared and used here were mature and immunogenic. Taken together, the results suggest that the DC-mediated neuroprotection was achieved via the induction of a systemic T-cell-dependent immune response. Better preservation of neural tissue and diminished formation of cysts and scar tissue accompanied the improved functional recovery in DC-treated rats. The use of antigen-specific DCs may represent an effective way to obtain, via transient induction of an autoimmune response, the maximal benefit of immune-mediated repair and maintenance as well as protection against self-destructive compounds.


Neuron | 2015

The Glia-Derived Alarmin IL-33 Orchestrates the Immune Response and Promotes Recovery following CNS Injury

Sachin P. Gadani; James T. Walsh; Igor Smirnov; Jingjing Zheng; Jonathan Kipnis

Inflammation is a prominent feature of CNS injury that heavily influences neuronal survival, yet the signals that initiate and control it remain poorly understood. Here we identify the nuclear alarmin, interleukin (IL)-33, as an important regulator of the innate immune response after CNS injury. IL-33 is expressed widely throughout the healthy brain and is concentrated in white mater due to predominant expression in post-mitotic oligodendrocytes. IL-33 is released immediately after CNS injury from damaged oligodendrocytes, acting on local astrocytes and microglia to induce chemokines critical for monocyte recruitment. Mice lacking IL-33 have impaired recovery after CNS injury, which is associated with reduced myeloid cell infiltrates and decreased induction of M2 genes at the injury site. These results demonstrate a novel molecular mediator contributing to immune cell recruitment to the injured CNS and may lead to new therapeutic insights in CNS injury and neurodegenerative diseases.


Stroke | 2007

A Novel Immune-Based Therapy for Stroke Induces Neuroprotection and Supports Neurogenesis

Yaniv Ziv; Arseny Finkelstein; Yona Geffen; Jonathan Kipnis; Igor Smirnov; Suzi Shpilman; Irena Vertkin; Michal Kimron; Aya Lange; Torsten Hecht; Klaus G. Reyman; Jonathan B. Marder; Michal Schwartz; Eti Yoles

The ability of the central nervous system to cope with stressful conditions was shown to be dependent on proper T-cell–mediated immune response. Because the therapeutic window for neuroprotection after acute insults such as stroke is relatively narrow, we searched for a procedure that would allow the relevant T cells to be recruited rapidly. Permanent middle cerebral artery occlusion was induced in adult rats. To facilitate a rapid poststroke T cell activity, rats were treated with poly-YE using different regimens. Control and poly-YE–treated rats were assessed for functional recovery using neurological severity score and Morris water maze. Neuroprotection, neurogenesis, growth factor expression, and microglial phenotype were assessed using histological and immunofluorescence methods. Administration of poly-YE as late as 24 hours after middle cerebral artery occlusion yielded a beneficial effect manifested by better neurological performance, reduced neuronal loss, attenuation of behavioral deficits, and increased hippocampal and cortical neurogenesis. This compound affected the subacute phase by modulating microglial response and by increasing local production of insulin-like growth factor-I, known to be a key player in neuronal survival and neurogenesis. The relative wide therapeutic window, coupled with its efficacy in attenuating further degeneration and enhancing restoration, makes poly-YE a promising immune-based candidate for stroke therapy.


Brain Behavior and Immunity | 2014

Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire

Ali Radjavi; Igor Smirnov; Jonathan Kipnis

Numerous methods of T cell depletion lead to impairment of learning and memory function in mice. While adoptive transfer of whole splenocytes rescues learning behavior impairments, the precise sub-population and antigenic specificity of the T cells mediating the rescue remains unknown. Using several transgenic mouse models in combination with adoptive transfers, we demonstrate the necessity of an antigen-specific CD4(+) T cell compartment in normal spatial learning and memory, as measured by the Morris water maze (MWM). Moreover, transfer of a monoclonal T cell population reactive to the central nervous system (CNS) antigen, myelin oligodendrocyte glycoprotein (MOG), was sufficient to improve cognitive task performance in otherwise impaired OTII mice, raising the possibility that the antigen-specificity requirement of pro-cognitive T cells may be directed against CNS-derived self-antigens.


Journal of Immunology | 2014

Regulatory T Cells in Central Nervous System Injury: A Double-Edged Sword

James T. Walsh; Jingjing Zheng; Igor Smirnov; Ulrike Lorenz; Kenneth S. K. Tung; Jonathan Kipnis

Previous research investigating the roles of T effector (Teff) and T regulatory (Treg) cells after injury to the CNS has yielded contradictory conclusions, with both protective and destructive functions being ascribed to each of these T cell subpopulations. In this work, we study this dichotomy by examining how regulation of the immune system affects the response to CNS trauma. We show that, in response to CNS injury, Teff and Treg subsets in the CNS-draining deep cervical lymph nodes are activated, and surgical resection of these lymph nodes results in impaired neuronal survival. Depletion of Treg, not surprisingly, induces a robust Teff response in the draining lymph nodes and is associated with impaired neuronal survival. Interestingly, however, injection of exogenous Treg cells, which limits the spontaneous beneficial immune response after CNS injury, also impairs neuronal survival. We found that no Treg accumulate at the site of CNS injury, and that changes in Treg numbers do not alter the amount of infiltration by other immune cells into the site of injury. The phenotype of macrophages at the site, however, is affected: both addition and removal of Treg negatively impact the numbers of macrophages with alternatively activated (tissue-building) phenotype. Our data demonstrate that neuronal survival after CNS injury is impaired when Treg cells are either removed or added. With this exacerbation of neurodegeneration seen with both addition and depletion of Treg, we recommend exercising extreme caution when considering the therapeutic targeting of Treg cells after CNS injury, and possibly in chronic neurodegenerative conditions.

Collaboration


Dive into the Igor Smirnov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Schwartz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Filiano

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg Butovsky

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge