Igor Y. Lapshov
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Igor Y. Lapshov.
Journal of Geophysical Research | 2010
M. Marisaldi; Fabio Fuschino; Claudio Labanti; M. Galli; F. Longo; Ettore Del Monte; G. Barbiellini; A. Giuliani; E. Moretti; S. Vercellone; Enrico Costa; S. Cutini; I. Donnarumma; M. Feroci; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; S. Mereghetti; Luigi Pacciani; Massimo Rapisarda; Paolo Soffitta; Massimo Trifoglio; A. Argan; F. Boffelli; A. Bulgarelli; P. A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando
We report the detection by the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite of terrestrial gamma ray flashes (TGFs) obtained with the minicalorimeter (MCAL) detector operating in the ...
Nature | 2009
Marco Tavani; A. Bulgarelli; Giancarlo Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; Enrico Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D’Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma
Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.
Nature | 2009
A. Bulgarelli; G. Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; E. Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; M. Feroci
Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.
Astronomy and Astrophysics | 2009
Francesco Verrecchia; Andrew W. Chen; A. Bulgarelli; A. Pellizzoni; A. Giuliani; S. Vercellone; F. Longo; P. Giommi; G. Barbiellini; Massimo Trifoglio; F. Gianotti; A. Argan; A. Antonelli; F. Boffelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; S. Colafrancesco; T. Contessi; Enrico Costa; S. Cutini; Filippo D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; G. Fanari; M. Feroci; A. Ferrari
We present the first catalog of high-confidence γ-ray sources detected by the AGILE satellite during observations performed from July 9, 2007 to June 30, 2008. Cataloged sources were detected by merging all the available data over the entire time period. AGILE, launched in April 2007, is an ASI mission devoted to γ-ray observations in the 30 MeV–50 GeV energy range, with simultaneous X-ray imaging capability in the 18–60 keV band. This catalog is based on Gamma-Ray Imaging Detector (GRID) data for energies greater than 100 MeV. For the first AGILE catalog, we adopted a conservative analysis, with a high-quality event filter optimized to select γ-ray events within the central zone of the instrument field of view (radius of 40 ◦ ). This is a significance-limited (4σ) catalog, and it is not a complete flux-limited sample due to the non-uniform first-year AGILE sky coverage. The catalog includes 47 sources, 21 of which are associated with confirmed or candidate pulsars, 13 with blazars (7 FSRQ, 4 BL Lacs, 2 unknown type), 2 with HMXRBs, 2 with SNRs, 1 with a colliding-wind binary system, and 8 with unidentified sources.
The Astrophysical Journal | 2010
A. Giuliani; Andrew W. Chen; A. Argan; G. Barbiellini; A. Bulgarelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; Filippo D'Ammando; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Feroci; Fabio Fuschino; M. Galli; F. Gianotti; Claudio Labanti; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; F. Longo; M. Marisaldi; M. Mastropietro; S. Mereghetti; E. Morelli; E. Moretti
The supernova remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray, and gamma-ray energy emissions. In this Letter, we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV–3 GeV is detected across the SNR with its prominent maximum (source “A”) localized in the northeastern shell with a flux F = (47 ± 10) × 10 −8 photons cm −2 s −1 above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source “A” is not coincident with the TeV source located 0.4 ◦ away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma rays in the range 0.1–10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of cospatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud “E”) provides a remarkable “target” for nucleonic interactions of accelerated hadrons; our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.
The Astrophysical Journal | 2009
S. Vercellone; Andrew W. Chen; V. Vittorini; A. Giuliani; F. D'Ammando; I. Donnarumma; G. Pucella; C. M. Raiteri; M. Villata; W. P. Chen; G. Tosti; D. Impiombato; Patrizia Romano; A. Belfiore; A. De Luca; G. Novara; F. Senziani; A. Bazzano; M. Fiocchi; P. Ubertini; A. Ferrari; A. Argan; G. Barbiellini; F. Boffelli; A. Bulgarelli; P. A. Caraveo; P. W. Cattaneo; V. Cocco; Enrico Costa; E. Del Monte
We report on a multiwavelength observation of the blazar 3C 454.3 (which we dubbedcrazydiamond) carried out on November 2007 by means of the astrophysical satellitesAGILE,InternationalGamma-RayAstrophysicsLaboratory (INTEGRAL), Swift, the Whole Earth Blazar Telescope (WEBT) Consortium, and the optical–NIR telescope Rapid Eye Mount (REM). Thanks to the wide field of view of theAGILE satellite and its prompt alert dissemination to other observatories, we obtained a long (three weeks), almost continuous γ -ray coverage of the blazar 3C 454.3 across 14 decades of energy. This broadband monitoring allows us to study in great detail light curves, correlations, time lags, and spectral energy distributions (SEDs) during different physical states. Gamma-ray data were collected during an AGILE pointing toward the Cygnus Region. Target of Opportunity (ToO) observations were performed to follow up the γ -ray observations in the soft and hard X-ray energy bands. Optical data were acquired continuously by means of a preplanned WEBT campaign and through an REM ToO repointing. 3C 454.3 is detected at a ∼19σ level during the three-week observing period, with an average flux above 100 MeV of FE>100 MeV = (170 ± 13) × 10 −8 photons cm −2 s −1 .T heγ -ray spectrum can be fitted with a single power law with photon index ΓGRID = 1.73 ± 0.16 between 100 MeV and 1 GeV. We detect significant day-by-day variability of the γ -ray emission during our observations, and we can exclude that the fluxes are constant at the 99.6% (∼ 2.9σ ) level. The source was detected typically around 40 deg off-axis, and it was substantially off–axis in the field of view of the AGILE hard X-ray imager. However, a five-day long ToO observation by INTEGRAL detected 3C 454.3 at an average flux of about F20–200 keV = 1.49 × 10 −3 photons cm −2 s −1 with an average photon index of ΓIBIS = 1.75 ± 0.24 between 20– 200 keV. Swift also detected 3C 454.3 with a flux in the 0.3–10 keV energy band in the range (1.23–1.40) × 10 −2 photons cm −2 s −1 and a photon index in the range ΓXRT = 1.56–1.73. In the optical band, both WEBT and REM show an extremely variable behavior in the R band. A correlation analysis based on the entire data set is consistent with no time lags between the γ -ray and the optical flux variations. Our simultaneous multifrequency observations strongly indicate that the dominant emission mechanism between 30 MeV and 30 GeV is dominated by inverse Compton scattering of relativistic electrons in the jet on the external photons from the broad line region.
The Astrophysical Journal | 2009
S. Sabatini; E. Pian; A. Bulgarelli; Patrizia A. Caraveo; Roberto Viotti; M. F. Corcoran; A. Giuliani; F. Verrecchia; S. Vercellone; S. Mereghetti; A. Argan; G. Barbiellini; F. Boffelli; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Feroci; M. Fiorini; T. Froysland; Fabio Fuschino; M. Galli; F. Gianotti; Claudio Labanti
We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (η Car) during the period 2007 July-2009 January. We detect a gamma-ray source (1AGL J1043–5931) consistent with the position of η Car. If 1AGL J1043–5931 is associated with the Car system, our data provide the long sought first detection above 100 MeV of a colliding wind binary. The average gamma-ray flux above 100 MeV and integrated over the preperiastron period 2007 July-2008 October is F γ = (37 ± 5) × 10–8 ph cm–2 s–1 corresponding to an average gamma-ray luminosity of L γ = 3.4 × 1034 erg s–1 for a distance of 2.3 kpc. We also report a two-day gamma-ray flaring episode of 1AGL J1043–5931 on 2008 October 11-13 possibly related to a transient acceleration and radiation episode of the strongly variable shock in the system.
The Astrophysical Journal | 2011
E. Striani; G. Piano; I. Donnarumma; G. Pucella; V. Vittorini; A. Bulgarelli; Alessio Trois; F. Verrecchia; Enrico Costa; Martin C. Weisskopf; Allyn F. Tennant; A. Argan; G. Barbiellini; P. A. Caraveo; M. Cardillo; Paolo Walter Cattaneo; Andrew W. Chen; G. De Paris; E. Del Monte; G. Di Cocco; A. Ferrari; M. Feroci; Fabio Fuschino; M. Galli; F. Gianotti; A. Giuliani; Claudio Labanti; Igor Y. Lapshov; F. Lazzarotto; F. Longo
We report on the extremely intense and fast gamma-ray flare above 100 MeV detected by AGILE from the Crab Nebula in mid-April 2011. This event is the fourth of a sequence of reported major gamma-ray flares produced by the Crab Nebula in the period 2007/mid-2011. These events are attributed to strong radiative and plasma instabilities in the inner Crab Nebula, and their properties are crucial for theoretical studies of fast and efficient particle acceleration up to 10{sup 15} eV. Here we study the very rapid flux and spectral evolution of the event that on 2011 April 16 reached the record-high peak flux of F = (26 {+-} 5) x 10{sup -6} photons cm{sup -2} s{sup -1} with a rise-time timescale that we determine to be in the range 6-10 hr. The peak flaring gamma-ray spectrum reaches a distinct maximum near 500 MeV with no substantial emission above 1 GeV. The very rapid rise time and overall evolution of the Crab Nebula flare strongly constrain the acceleration mechanisms and challenge MHD models. We briefly discuss the theoretical implications of our observations.
Astronomy and Astrophysics | 2008
A. Giuliani; S. Mereghetti; Fabio Fornari; E. Del Monte; M. Feroci; M. Marisaldi; P. Esposito; F. Perotti; Marco Tavani; A. Argan; G. Barbiellini; F. Boffelli; A. Bulgarelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; Enrico Costa; Filippo D'Ammando; G. Di Cocco; I. Donnarumma; M. Fiorini; Fabio Fuschino; Marcello Galli; F. Gianotti; Claudio Labanti; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; F. Longo; A. Morselli
GRB 080514B is the first gamma ray burst (GRB), since the time o f EGRET, for which individual photons of energy above several tens of MeV have been detected with a pair-conversion tracker telescope. This burst was discovered with the Italian AGILE gamma-ray satellite. The GRB was localized with a cooperation by AGILE and the interplanetary network (IPN). The gamma-ray imager (GRID) estimate of the position, obtained before the SuperAGILE-IPN localization, is found to be consistent with the burst position. The hard X-ray emission observed by SuperAGILE lasted about 7 s, while there is evidence that the emission above 30 MeV extends for a longer duration (at least 13 s). Similar behavior was seen in the past from a few other GRBs observed with EGRET. However, the latter measurements were affected, during the brightest phases, by instrumental dead time effects, resulting in only lower limits to the burst intensity. Thanks to the small dead time of th e AGILE/GRID we could assess that in the case of GRB 080514B the gamma-ray to X‐ray fl ux ratio changes significantly between the prompt and extend ed emission phase.
The Astrophysical Journal | 2008
S. Vercellone; Andrew W. Chen; A. Giuliani; A. Bulgarelli; I. Donnarumma; Igor Y. Lapshov; Marco Tavani; A. Argan; G. Barbiellini; P. A. Caraveo; V. Cocco; Enrico Costa; Filippo D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; M. Feroci; M. Fiorini; T. Froysland; Fabio Fuschino; Marcello Galli; F. Gianotti; Claudio Labanti; F. Lazzarotto; P. Lipari; F. Longo; M. Marisaldi; F. Mauri; S. Mereghetti; A. Morselli
We report the first blazar detection by AGILE. AGILE detected 3C 454.3 during a period of strongly enhanced optical emission in 2007 July. AGILE observed the source with a dedicated repointing during the period 2007 July 24–30 with its two co-aligned imagers, the Gamma-Ray Imaging Detector and the hard X-ray imager SuperAGILE sensitive in the 30 MeV to 50 GeV and 18–60 keV ranges, respectively. Over the entire period, AGILE detected g-ray emission from 3C 454.3 at a significance level of 13.8 j with an average flux ( MeV) of E 1 100 photons cm s . The g-ray flux appears to be variable toward the end of the observation. 8 2 1 (280 40) # 10 No emission was detected by Super-AGILE in the energy range 20–60 keV, with a 3 j upper limit of 2.3 # photons cm s . The g-ray flux level of 3C 454.3 detected by AGILE is the highest ever detected for this 3 2 1 10 quasar and among the most intense g-ray fluxes ever detected from flat-spectrum radio quasars. Subject headings: gamma rays: observations — quasars: individual (3C 454.3)