Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ikaro Silva is active.

Publication


Featured researches published by Ikaro Silva.


Physiological Measurement | 2016

An open access database for the evaluation of heart sound algorithms

Chengyu Liu; David Springer; Qiao Li; Benjamin Moody; Ricardo Abad Juan; Francisco J. Chorro; Francisco Castells; José Millet Roig; Ikaro Silva; Alistair E. W. Johnson; Zeeshan Syed; Samuel Schmidt; Chrysa D. Papadaniil; Hosein Naseri; Ali Moukadem; Alain Dieterlen; Christian Brandt; Hong Tang; Maryam Samieinasab; Mohammad Reza Samieinasab; Reza Sameni; Roger G. Mark; Gari D. Clifford

In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.


computing in cardiology conference | 2015

The PhysioNet/Computing in Cardiology Challenge 2015: Reducing false arrhythmia alarms in the ICU

Gari D. Clifford; Ikaro Silva; Benjamin Moody; Qiao Li; Danesh Kella; Abdullah Shahin; Tristan Kooistra; Diane Perry; Roger G. Mark

High false alarm rates in the ICU decrease quality of care by slowing staff response times while increasing patient delirium through noise pollution. The 2015 Physio-Net/Computing in Cardiology Challenge provides a set of 1,250 multi-parameter ICU data segments associated with critical arrhythmia alarms, and challenges the general research community to address the issue of false alarm suppression using all available signals. Each data segment was 5 minutes long (for real time analysis), ending at the time of the alarm. For retrospective analysis, we provided a further 30 seconds of data after the alarm was triggered.


Biomedical Engineering Online | 2012

Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series

J. Jack Lee; Shamim Nemati; Ikaro Silva; Bradley A. Edwards; James P. Butler; Atul Malhotra

BackgroundThe detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomedical applications featuring small sample size and presence of outliers.MethodsWith respect to detection of increased coupling strength, we compared three transfer entropy estimation techniques using both simulated time series and respiratory recordings from lambs. The following estimation methods were analyzed: fixed-binning with ranking, kernel density estimation (KDE), and the Darbellay-Vajda (D-V) adaptive partitioning algorithm extended to three dimensions. In the simulated experiment, sample size was varied from 50 to 200, while coupling strength was increased. In order to introduce outliers, the heavy-tailed Laplace distribution was utilized. In the lamb experiment, the objective was to detect increased respiratory-related chemosensitivity to O2 and CO2 induced by a drug, domperidone. Specifically, the separate influence of end-tidal PO2 and PCO2 on minute ventilation (V˙E) before and after administration of domperidone was analyzed.ResultsIn the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. In the lamb experiment, D-V partitioning resulted in the statistically strongest increase in transfer entropy post-domperidone for PO2→V˙E. In addition, D-V partitioning was the only method that could detect an increase in transfer entropy for PCO2→V˙E, in agreement with experimental findings.ConclusionsTransfer entropy is capable of detecting directional coupling changes in non-linear biomedical time series analysis featuring a small number of observations and presence of outliers. The results of this study suggest that fixed-binning, even with ranking, is too primitive, and although there is no clear winner between KDE and D-V partitioning, the reader should note that KDE requires more computational time and extensive parameter selection than D-V partitioning. We hope this study provides a guideline for selection of an appropriate transfer entropy estimation method.


Journal of open research software | 2014

An Open-source Toolbox for Analysing and Processing PhysioNet Databases in MATLAB and Octave

Ikaro Silva; George B. Moody

The WaveForm DataBase (WFDB) Toolbox for MATLAB/Octave enables integrated access to PhysioNet’s software and databases. Using the WFDB Toolbox for MATLAB/Octave, users have access to over 50 physiological databases in PhysioNet. The toolbox provides access over 4 TB of biomedical signals including ECG, EEG, EMG, and PLETH. Additionally, most signals are accompanied by metadata such as medical annotations of clinical events: arrhythmias, sleep stages, seizures, hypotensive episodes, etc. Users of this toolbox should easily be able to reproduce, validate, and compare results published based on PhysioNet’s software and databases.


BMC Medical Informatics and Decision Making | 2013

Accessing the public MIMIC-II intensive care relational database for clinical research

Daniel J. Scott; J. Jack Lee; Ikaro Silva; Shinhyuk Park; George B. Moody; Leo Anthony Celi; Roger G. Mark

BackgroundThe Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image.ResultsQueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge “Predicting mortality of ICU Patients”.ConclusionsQueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.


Physiological Measurement | 2015

Robust detection of heart beats in multimodal data.

Ikaro Silva; Benjamin Moody; Joachim Behar; Alistair E. W. Johnson; Julien Oster; Gari D. Clifford; George B. Moody

The 15th annual PhysioNet/CinC Challenge aims to encourage the exploration of robust methods for locating heart beats in continuous long-term data from bedside monitors and similar devices that record not only ECG but usually other physiologic signals as well, including pulsatile signals that directly reflect cardiac activity, and other signals that may have few or no observable markers of heart beats. Our goal is to accelerate development of open-source research tools that can reliably, efficiently, and automatically analyze data such as that contained in the MIMIC II Waveform Database, making use of all relevant information. Data for this Challenge are 10-minute (or occasionally shorter) excerpts (“records”) of longer multi-parameter recordings of human adults, including patients with a wide range of problems as well as healthy volunteers. Each record contains four to eight signals; the first is an ECG signal in each case, but the others are a variety of simultaneously recorded physiologic signals that may be useful for robust beat detection. We prepared and posted 100 training records, and retained 300 hidden test records for evaluation of Challenge entries. A total of 1,332 entries from 60 teams were processed during the challenge period.


IEEE Transactions on Biomedical Engineering | 2012

Signal Quality Estimation With Multichannel Adaptive Filtering in Intensive Care Settings

Ikaro Silva; J. Jack Lee; Roger G. Mark

A signal quality estimate of a physiological waveform can be an important initial step for automated processing of real-world data. This paper presents a new generic point-by-point signal quality index (SQI) based on adaptive multichannel prediction that does not rely on ad hoc morphological feature extraction from the target waveform. An application of this new SQI to photoplethysmograms (PPG), arterial blood pressure (ABP) measurements, and ECG showed that the SQI is monotonically related to signal-to-noise ratio (simulated by adding white Gaussian noise) and to subjective human quality assessment of 1361 multichannel waveform epochs. A receiver-operating-characteristic (ROC) curve analysis, with the human “bad” quality label as positive and the “good” quality label as negative, yielded areas under the ROC curve of 0.86 (PPG), 0.82 (ABP), and 0.68 (ECG).


Biomedical Engineering Online | 2015

Quality estimation of the electrocardiogram using cross-correlation among leads

Eduardo Morgado; Felipe Alonso-Atienza; Ricardo Santiago-Mozos; Óscar Barquero-Pérez; Ikaro Silva; Javier Ramos; Roger G. Mark

BackgroundFast and accurate quality estimation of the electrocardiogram (ECG) signal is a relevant research topic that has attracted considerable interest in the scientific community, particularly due to its impact on tele-medicine monitoring systems, where the ECG is collected by untrained technicians. In recent years, a number of studies have addressed this topic, showing poor performance in discriminating between clinically acceptable and unacceptable ECG records.Methods This paper presents a novel, simple and accurate algorithm to estimate the quality of the 12-lead ECG by exploiting the structure of the cross-covariance matrix among different leads. Ideally, ECG signals from different leads should be highly correlated since they capture the same electrical activation process of the heart. However, in the presence of noise or artifacts the covariance among these signals will be affected. Eigenvalues of the ECG signals covariance matrix are fed into three different supervised binary classifiers.Results and conclusion The performance of these classifiers were evaluated using PhysioNet/CinC Challenge 2011 data. Our best quality classifier achieved an accuracy of 0.898 in the test set, while having a complexity well below the results of contestants who participated in the Challenge, thus making it suitable for implementation in current cellular devices.


Physiological Measurement | 2016

False alarm reduction in critical care.

Gari D. Clifford; Ikaro Silva; Benjamin Moody; Qiao Li; Danesh Kella; Abdullah Chahin; Tristan Kooistra; Diane Perry; Roger G. Mark

High false alarm rates in the ICU decrease quality of care by slowing staff response times while increasing patient delirium through noise pollution. The 2015 PhysioNet/Computing in Cardiology Challenge provides a set of 1250 multi-parameter ICU data segments associated with critical arrhythmia alarms, and challenges the general research community to address the issue of false alarm suppression using all available signals. Each data segment was 5 minutes long (for real time analysis), ending at the time of the alarm. For retrospective analysis, we provided a further 30 seconds of data after the alarm was triggered. A total of 750 data segments were made available for training and 500 were held back for testing. Each alarm was reviewed by expert annotators, at least two of whom agreed that the alarm was either true or false. Challenge participants were invited to submit a complete, working algorithm to distinguish true from false alarms, and received a score based on their programs performance on the hidden test set. This score was based on the percentage of alarms correct, but with a penalty that weights the suppression of true alarms five times more heavily than acceptance of false alarms. We provided three example entries based on well-known, open source signal processing algorithms, to serve as a basis for comparison and as a starting point for participants to develop their own code. A total of 38 teams submitted a total of 215 entries in this years Challenge. This editorial reviews the background issues for this challenge, the design of the challenge itself, the key achievements, and the follow-up research generated as a result of the Challenge, published in the concurrent special issue of Physiological Measurement. Additionally we make some recommendations for future changes in the field of patient monitoring as a result of the Challenge.


PLOS ONE | 2017

A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis

Ryan S. McGinnis; Nikhil Mahadevan; Yaejin Moon; Kirsten Seagers; Nirav Sheth; John A. Wright; Steven DiCristofaro; Ikaro Silva; Elise Jortberg; Melissa Ceruolo; Jesus Pindado; Jacob J. Sosnoff; Roozbeh Ghaffari; Shyamal Patel

Gait speed is a powerful clinical marker for mobility impairment in patients suffering from neurological disorders. However, assessment of gait speed in coordination with delivery of comprehensive care is usually constrained to clinical environments and is often limited due to mounting demands on the availability of trained clinical staff. These limitations in assessment design could give rise to poor ecological validity and limited ability to tailor interventions to individual patients. Recent advances in wearable sensor technologies have fostered the development of new methods for monitoring parameters that characterize mobility impairment, such as gait speed, outside the clinic, and therefore address many of the limitations associated with clinical assessments. However, these methods are often validated using normal gait patterns; and extending their utility to subjects with gait impairments continues to be a challenge. In this paper, we present a machine learning method for estimating gait speed using a configurable array of skin-mounted, conformal accelerometers. We establish the accuracy of this technique on treadmill walking data from subjects with normal gait patterns and subjects with multiple sclerosis-induced gait impairments. For subjects with normal gait, the best performing model systematically overestimates speed by only 0.01 m/s, detects changes in speed to within less than 1%, and achieves a root-mean-square-error of 0.12 m/s. Extending these models trained on normal gait to subjects with gait impairments yields only minor changes in model performance. For example, for subjects with gait impairments, the best performing model systematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%, and achieves a root-mean-square-error of 0.14 m/s. Additional analyses demonstrate that there is no correlation between gait speed estimation error and impairment severity, and that the estimated speeds maintain the clinical significance of ground truth speed in this population. These results support the use of wearable accelerometer arrays for estimating walking speed in normal subjects and their extension to MS patient cohorts with gait impairment.

Collaboration


Dive into the Ikaro Silva's collaboration.

Top Co-Authors

Avatar

Roger G. Mark

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gari D. Clifford

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin Moody

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

George B. Moody

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo Anthony Celi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shyamal Patel

Spaulding Rehabilitation Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jack Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge