Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iker Zuriguel is active.

Publication


Featured researches published by Iker Zuriguel.


Physical Review E | 2005

Jamming during the discharge of granular matter from a silo.

Iker Zuriguel; A. Garcimartín; Diego Maza; Luis A. Pugnaloni; J. M. Pastor

In this work, we present an experimental study of the jamming that stops the free flow of grains from a silo discharging by gravity. When the outlet size is not much bigger than the beads, granular material jams the outlet of the container due to the formation of an arch. Statistical data from the number of grains fallen between consecutive jams are presented. The information that they provide can help one to understand the jamming phenomenon. As the ratio between the size of the orifice and the size of the beads is increased, the probability that an arch blocks the outlet decreases. We show here that there is a power-law divergence of the mean avalanche size for a finite critical radius. Beyond this critical radius, no jamming can occur and the flow is never stopped. The dependence of the arch formation on the shape and the material of the grains has been explored. It has been found that the material properties of the grains do not affect the arch formation probability. On the contrary, the shape of the grains deeply influences it. A simple model to interpret the results is also discussed.


Scientific Reports | 2015

Clogging transition of many-particle systems flowing through bottlenecks

Iker Zuriguel; Daniel R. Parisi; R. C. Hidalgo; Celia Lozano; Alvaro Janda; Paula A. Gago; Juan Pablo Peralta; Luis M. Ferrer; Luis A. Pugnaloni; Eric Clément; Diego Maza; Ignacio Pagonabarraga; A. Garcimartín

When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.


EPL | 2008

Jamming and critical outlet size in the discharge of a two-dimensional silo

Alvaro Janda; Iker Zuriguel; A. Garcimartín; Luis A. Pugnaloni; Diego Maza

We present an experimental study of jamming in the discharge of grains through an opening in a two-dimensional silo. For a wide range of outlet sizes, we obtain the size distribution of avalanche defined as the number of grains that fall between two consecutive jams. From these distributions, we obtain the probability that the silo jams before N particles pass through the orifice. Then a simple model of arch formation is proposed that predicts the shape of the jamming probability function and reveals that it does not exist a critical size of the orifice above which there is not jamming.


Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | 2008

The role of particle shape on the stress distribution in a sandpile

Iker Zuriguel; T. Mullin

The results of an experimental investigation into the counter-intuitive phenomenon that a local minimum in the normal stress profile is sometimes found under the apex of a sandpile are presented. Specifically, the effects of particle shape on the stress distribution are studied and it is shown that anisotropy of the particles significantly enhances the dip. This amplification is attributed to the mechanical stability induced by boundary alignment of the anisotropic particles. Circular, ellipsoidal and pear-shaped cylinders are used and the stress propagates principally towards the sides of the pile through primary stress chains. Secondary chains are also present and we propose that the relationship between the magnitudes of the ratio of primary to secondary chains is correlated with the size of the dip.


Physical Review E | 2010

Shape of jamming arches in two-dimensional deposits of granular materials.

A. Garcimartín; Iker Zuriguel; Luis A. Pugnaloni; Alvaro Janda

We present experimental results on the shape of arches that block the outlet of a two-dimensional silo. For a range of outlet sizes, we measure some properties of the arches such as the number of particles involved, the span, the aspect ratio, and the angles between mutually stabilizing particles. These measurements shed light on the role of frictional tangential forces in arching. In addition, we find that arches tend to adopt an aspect ratio (the quotient between height and half the span) close to 1, suggesting an isotropic load. The comparison of the experimental results with data from numerical models of the arches formed in the bulk of a granular column reveals the similarities of both, as well as some limitations in the few existing models.


Physical Review Letters | 2012

Breaking Arches with Vibrations: The Role of Defects

Celia Lozano; Geoffroy Lumay; Iker Zuriguel; R. C. Hidalgo; A. Garcimartín

We present experimental and numerical results regarding the stability of arches against external vibrations. Two-dimensional strings of mutually stabilizing grains are geometrically analyzed and subsequently submitted to a periodic forcing at fixed frequency and increasing amplitude. The main factor that determines the granular arch resistance against vibrations is the maximum angle among those formed between any particle of the arch and its two neighbors: the higher the maximum angle is, the easier it is to break the arch. On the basis of an analysis of the forces, a simple explanation is given for this dependence. From this, interesting information can be extracted about the expected magnitudes of normal forces and friction coefficients of the particles composing the arches.


Physical Review E | 2009

Role of vibrations in the jamming and unjamming of grains discharging from a silo.

Cristian Mankoc; A. Garcimartín; Iker Zuriguel; Diego Maza; Luis A. Pugnaloni

We present experimental results of the jamming of noncohesive particles discharged from a flat bottomed silo subjected to vertical vibration. When the exit orifice is only a few grain diameters wide, the flow can be arrested due to the formation of blocking arches. Hence, an external excitation is needed to resume the flow. The use of a continuous gentle vibration is a usual technique to ease the flow in such situations. Even though jamming is less frequent, it is still an issue in vibrated silos. There are, in principle, two possible mechanisms through which vibrations may facilitate the flow: (i) a decrease in the probability of the formation of blocking arches and (ii) the breakage of blocking arches once they have been formed. By measuring the time intervals inside an avalanche during which no particles flow through the outlet, we are able to estimate the probability of breaking a blocking arch by vibrations. The result agrees with the prediction of a bivariate probabilistic model in which the formation of blocking arches is equally probable in vibrated and nonvibrated silos. This indicates that the second aforementioned mechanism is mainly responsible for improving the flowability in gently vibrated silos.


Physical Review E | 2010

Towards a relevant set of state variables to describe static granular packings

Luis A. Pugnaloni; Iván Sánchez; Paula A. Gago; José Damas; Iker Zuriguel; Diego Maza

We analyze, experimentally and numerically, the steady states, obtained by tapping, of a two-dimensional granular layer. Contrary to the usual assumption, we show that the reversible (steady state branch) of the density-acceleration curve is nonmonotonous. Accordingly, steady states with the same mean volume can be reached by tapping the system with very different intensities. Simulations of dissipative frictional disks show that equal volume steady states have different values of the force moment tensor. Additionally, we find that steady states of equal stress can be obtained by changing the duration of the taps; however, these states present distinct mean volumes. These results confirm previous speculations that the volume and the force moment tensor are both needed to describe univocally equilibrium states in static granular assemblies.


European Physical Journal E | 2011

Stress distribution of faceted particles in a silo after its partial discharge

T. Kanzaki; M. Acevedo; Iker Zuriguel; Ignacio Pagonabarraga; Diego Maza; R. C. Hidalgo

We present experimental and numerical results of the effect that a partial discharge has on the morphological and micro-mechanical properties of non-spherical, convex particles in a silo. The comparison of the particle orientation after filling the silo and its subsequent partial discharge reveals important shear-induced orientation, which affects stress propagation. For elongated particles, the flow induces an increase in the packing disorder which leads to a reduction of the vertical stress propagation developed during the deposit generated prior to the partial discharge. For square particles, the flow favors particle alignment with the lateral walls promoting a behavior opposite to the one of the elongated particles: vertical force transmission, parallel to gravity, is induced. Hence, for elongated particles the flow developed during the partial discharge of the silo leads to force saturation with depth whereas for squares the flow induces hindering of the force saturation observed during the silo filling.


Physical Review E | 2012

Flow and clogging in a silo with an obstacle above the orifice

Celia Lozano; Alvaro Janda; A. Garcimartín; Diego Maza; Iker Zuriguel

In a recent paper [Zuriguel et al., Phys. Rev. Lett. 107, 278001 (2011)] it has been shown that the presence of an obstacle above the outlet can significatively reduce the clogging probability of granular matter pouring from a silo. The amount of this reduction strongly depends on the obstacle position. In this work, we present new measurements to analyze different outlet sizes, extending foregoing results and revealing that the effect of the obstacle is enhanced as the outlet size is increased. In addition, the effect of the obstacle position on the flow rate properties and in the geometrical features of arches is studied. These results reinforce previous evidence of the pressure reduction induced by the obstacle. In addition, it is shown how the mean avalanche size and the average flow rate are not necessarily linked. On the other hand, a close relationship is suggested between the mean avalanche size and the flow rate fluctuations.

Collaboration


Dive into the Iker Zuriguel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis A. Pugnaloni

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Parisi

Instituto Tecnológico de Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge