Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ikjun Choi is active.

Publication


Featured researches published by Ikjun Choi.


ACS Nano | 2010

Graphene Oxide−Polyelectrolyte Nanomembranes

Dhaval D. Kulkarni; Ikjun Choi; Srikanth Singamaneni; Vladimir V. Tsukruk

Owing to its remarkable electrical, thermal, and mechanical properties, graphene, an atomic layer of carbon, is considered to be an excellent two-dimensional filler for polymer nanocomposites with outstanding mechanical strength along with the potential for excellent electrical and thermal properties. One of the critical limitations with conventional fillers is that the loading fraction required for achieving significant improvement in mechanical properties is relatively high, frequently reaching 50% for maximum strength. Here, we demonstrate that the mechanical properties of ultrathin laminated nanocomposites can be significantly enhanced by the incorporation of small amounts of a dense monolayer of planar graphene oxide (GO) flakes. Negatively charged functionalized graphene oxide layers were incorporated into polyelectrolyte multilayers (PEMs) fabricated in a layer-by-layer (LbL) assembly via Langmuir-Blodgett (LB) deposition. These LbL-LB graphene oxide nanocomposite films were released as robust freely standing membranes with large lateral dimensions (centimeters) and a thickness of around 50 nm. Micromechanical measurements showed enhancement of the elastic modulus by an order of magnitude, from 1.5 GPa for pure LbL membranes to about 20 GPa for only 8.0 vol % graphene oxide encapsulated LbL membranes. These tough nanocomposite PEMs can be freely suspended over large (few millimeters) apertures and sustain large mechanical deformations.


ACS Applied Materials & Interfaces | 2014

Competitive Adsorption of Dopamine and Rhodamine 6G on the Surface of Graphene Oxide

Hui Ren; Dhaval D. Kulkarni; Rajesh Kodiyath; Weinan Xu; Ikjun Choi; Vladimir V. Tsukruk

Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional Langmuir adsorption behavior. FTIR analysis suggested that both R6G and DA molecules predominantly adsorb on the hydrophilic oxidized regions of the GO surface. Thus, when R6G and DA compounds were adsorbed from mixed solution, competitive adsorption was observed around the oxygen-containing groups of GO sheets, which resulted in partial desorption of R6G molecules from the surface of GO into the solution. The desorbed R6G molecules can be monitored by fluorescence change in solution and was dependent on the DA concentration. We suggest that the efficient competitive adsorption of different strongly bound bioanalytes onto GO-dye complex can be used for the development of sensitive and selective colorimetric biosensors.


ACS Nano | 2013

Nondestructive Light-Initiated Tuning of Layer-by-Layer Microcapsule Permeability

Weinan Xu; Ikjun Choi; Felix A. Plamper; Christopher V. Synatschke; Axel H. E. Müller; Vladimir V. Tsukruk

A nondestructive way to achieve remote, reversible, light-controlled tunable permeability of ultrathin shell microcapsules is demonstrated in this study. Microcapsules based on poly{[2-(methacryloyloxy)ethyl] trimethylammonium iodide} (PMETAI) star polyelectrolyte and poly(sodium 4-styrenesulfonate) (PSS) were prepared by a layer-by-layer (LbL) technique. We demonstrated stable microcapsules with controlled permeability with the arm number of a star polymer having significant effect on the assembly structure: the PMETAI star with 18 arms shows a more uniform and compact assembly structure. We observed that in contrast to regular microcapsules from linear polymers, the permeability of the star polymer microcapsules could be dramatically altered by photoinduced transformation of the trivalent hexacyanocobaltate ions into a mixture of mono- and divalent ions by using UV irradiation. The reversible contraction of PMETAI star polyelectrolyte arms and the compaction of star polyelectrolytes in the presence of multivalent counterions are considered to cause the dramatic photoinduced changes in microcapsule properties observed here. Remarkably, unlike the current mostly destructive approaches, the light-induced changes in microcapsule permeability are completely reversible and can be used for light-mediated loading/unloading control of microcapsules.


Small | 2009

Bimetallic Nanostructures as Active Raman Markers: Gold‐Nanoparticle Assembly on 1D and 2D Silver Nanostructure Surfaces

Ray Gunawidjaja; Eugenia Kharlampieva; Ikjun Choi; Vladimir V. Tsukruk

It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle-to-particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best-performing silver-gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir-Blodgett technique. An optimized design of a single-nanostructure substrate for surface-enhanced Raman spectroscopy (SERS), based on a wet-assembly technique proposed here, can serve as a compact and low-cost alternative to fabricated nanoparticle arrays.


Langmuir | 2011

Thin film assembly of spider silk-like block copolymers.

Sreevidhya Krishnaji; Wenwen Huang; Olena S. Rabotyagova; Eugenia Kharlampieva; Ikjun Choi; Vladimir V. Tsukruk; Rajesh R. Naik; Peggy Cebe; David L. Kaplan

We report the self-assembly of monolayers of spider silk-like block copolymers. Langmuir isotherms were obtained for a series of bioengineered variants of the spider silks, and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers onto silica substrates and were subsequently analyzed by atomic force microscopy (AFM). Static contact angle measurements were performed to characterize interactions across the interface (thin film, water, air), and molecular modeling was used to predict 3D conformation of spider silk-like block copolymers. The influence of molecular architecture and volume fraction of the proteins on the self-assembly process was assessed. At high surface pressure, spider silk-like block copolymers with minimal hydrophobic block (f(A) = 12%) formed oblate structures, whereas block copolymer with a 6-fold larger hydrophobic domain (f(A) = 46%) formed prolate structures. The varied morphologies obtained with increased hydrophobicity offer new options for biomaterials for coatings and related options. The design and use of bioengineered protein block copolymers assembled at air-water interfaces provides a promising approach to compare 2D microstructures and molecular architectures of these amphiphiles, leading to more rationale designs for a range of nanoengineered biomaterial needs as well as providing a basis of comparison to more traditional synthetic block copolymer systems.


Langmuir | 2014

Star-Shaped Molecules with Polyhedral Oligomeric Silsesquioxane Core and Azobenzene Dye Arms

Petr A. Ledin; Ihor M. Tkachenko; Weinan Xu; Ikjun Choi; V.V. Shevchenko; Vladimir V. Tsukruk

We synthesized a series of hybrid nanomaterials combining organic dyes with polyhedral oligomeric silsesquioxanes (POSS) based on three different azobenzenes: monoazobenzene (4-phenylazophenol), bis-azobenzene (Disperse Yellow 7 and Fast Garnet derivative), and push-pull azobenzene (Disperse Red 1) via hydrosilylation coupling. The azo-functionalized POSS compounds possess high thermal stability, and their branched architecture resulted in effective suppression of molecular aggregation and allowed for direct imaging of individual dye-POSS structures with expected molecular dimensions. Stable, uniform, smooth, and ultrathin nanocomposite films with mixed silica-organic composition and relatively low refractive indices can be fabricated from all azo-POSS branched conjugates. Finally, the photoisomerization behavior of POSS-conjugated 4-phenylazophenol was investigated in solution as well as in ultrathin nanocomposite film. We found that conjugation to POSS core did not affect the kinetics of trans-cis photoisomerization and thermal cis-trans relaxation. Furthermore, rapid and reversible photoisomerization was observed in azo-POSS nanocomposite films. We suggest that the highly stable branched azo-POSS conjugates with high dye grafting density described here can be considered for nanometer-sized photoswitches, active layer material with optical-limiting properties, and a medium with photoinduced anisotropy for optical storage.


Langmuir | 2013

Star Polymer Unimicelles on Graphene Oxide Flakes

Ikjun Choi; Dhaval D. Kulkarni; Weinan Xu; Constantinos Tsitsilianis; Vladimir V. Tsukruk

We report the interfacial assembly of amphiphilic heteroarm star copolymers (PSnP2VPn and PSn(P2VP-b-PtBA)n (n = 28 arms)) on graphene oxide flakes at the air-water interface. Adsorption, spreading, and ordering of star polymer micelles on the surface of the basal plane and edge of monolayer graphene oxide sheets were investigated on a Langmuir trough. This interface-mediated assembly resulted in micelle-decorated graphene oxide sheets with uniform spacing and organized morphology. We found that the surface activity of solvated graphene oxide sheets enables star polymer surfactants to subsequently adsorb on the presuspended graphene oxide sheets, thereby producing a bilayer complex. The positively charged heterocyclic pyridine-containing star polymers exhibited strong affinity onto the basal plane and edge of graphene oxide, leading to a well-organized and long-range ordered discrete micelle assembly. The preferred binding can be related to the increased conformational entropy due to the reduction of interarm repulsion. The extent of coverage was tuned by controlling assembly parameters such as concentration and solvent polarity. The polymer micelles on the basal plane remained incompressible under lateral compression in contrast to ones on the water surface due to strongly repulsive confined arms on the polar surface of graphene oxide and a preventive barrier in the form of the sheet edges. The densely packed biphasic tile-like morphology was evident, suggesting the high interfacial stability and mechanically stiff nature of graphene oxide sheets decorated with star polymer micelles. This noncovalent assembly represents a facile route for the control and fabrication of graphene oxide-inclusive ultrathin hybrid films applicable for layered nanocomposites.


ACS Applied Materials & Interfaces | 2012

Inkjet-assisted layer-by-layer printing of encapsulated arrays.

Rattanon Suntivich; Olga Shchepelina; Ikjun Choi; Vladimir V. Tsukruk

We present the facile fabrication of hydrogen-bonded layer-by-layer (LbL) microscopic dot arrays with encapsulated dye compounds. We demonstrate patterned encapsulation of Rhodamine dye as a model compound within poly(vinylpyrrolidone)/poly(methacrylic acid) (PVPON/PMAA) LbL dots constructed without an intermediate washing step. The inkjet printing technique improves encapsulation efficiency, reduces processing time, facilitates complex patterning, and controls lateral and vertical dimensions with diameters ranging from 130 to 35 μm (mostly controlled by the droplet size and the substrate hydrophobicity) and thickness of several hundred nanometers. The microscopic dots composed of hydrogen-bonded PVPON/PMAA components are also found to be stable in acidic solution after fabrication. This facile, fast, and sophisticated inkjet encapsulation method can be applied to other systems for fast fabrication of large-scale, high-resolution complex arrays of dye-encapsulated LbL dots.


Langmuir | 2011

Gold nanoparticles grown on star-shaped block copolymer monolayers.

Rattanon Suntivich; Ikjun Choi; Maneesh K. Gupta; Constantinos Tsitsilianis; Vladimir V. Tsukruk

We report on the growth of gold nanoparticles in polystyrene/poly(2-vinyl pyridine) (PS/P2VP) star-shaped block copolymer monolayers. These amphiphilic PS(n)P2VP(n) heteroarm star copolymers differ in molecular weight (149,000 and 529,000 Da) and the number of arms (9 and 28). Langmuir-Blodgett (LB) deposition was utilized to control the spatial arrangement of P2VP arms and their ability to reduce gold nanoparticles. The PS(n)P2VP(n) monolayer acted as a template for gold nanoparticle growth because of the monolayers high micellar stability at the liquid-solid interface, uniform domain morphology, and ability to adsorb Au ions from the water subphase. UV-vis spectra and AFM and TEM images confirmed the formation of individual gold nanoparticles with an average size of 6 ± 1 nm in the P2VP-rich outer phase. This facile strategy is critical to the formation of ultrathin polymer-gold nanocomposite layers over large surface areas with confined, one-sided positioning of gold nanoparticles in an outer P2VP phase at polymer-silicon interfaces.


Progress in Polymer Science | 2014

Graphene-polymer nanocomposites for structural and functional applications

Kesong Hu; Dhaval D. Kulkarni; Ikjun Choi; Vladimir V. Tsukruk

Collaboration


Dive into the Ikjun Choi's collaboration.

Top Co-Authors

Avatar

Vladimir V. Tsukruk

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Weinan Xu

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dhaval D. Kulkarni

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenia Kharlampieva

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ray Gunawidjaja

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Rajesh Kodiyath

National Institute for Materials Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge