Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ikram Blilou is active.

Publication


Featured researches published by Ikram Blilou.


Nature | 2005

The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.

Ikram Blilou; Jian Xu; Marjolein Wildwater; Viola Willemsen; Ivan A. Paponov; Jiří Friml; Renze Heidstra; Mitsuhiro Aida; Klaus Palme; Ben Scheres

Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.


Cell | 2004

The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell Niche

Mitsuhiro Aida; Dimitris Beis; Renze Heidstra; Viola Willemsen; Ikram Blilou; Carla Galinha; Laurent Nussaume; Yoo-Sun Noh; Richard M. Amasino; Ben Scheres

A small organizing center, the quiescent center (QC), maintains stem cells in the Arabidopsis root and defines the stem cell niche. The phytohormone auxin influences the position of this niche by an unknown mechanism. Here, we identify the PLETHORA1 (PLT1) and PLT2 genes encoding AP2 class putative transcription factors, which are essential for QC specification and stem cell activity. The PLT genes are transcribed in response to auxin accumulation and are dependent on auxin response transcription factors. Distal PLT transcript accumulation creates an overlap with the radial expression domains of SHORT-ROOT and SCARECROW, providing positional information for the stem cell niche. Furthermore, the PLT genes are activated in the basal embryo region that gives rise to hypocotyl, root, and root stem cells and, when ectopically expressed, transform apical regions to these identities. Thus, the PLT genes are key effectors for establishment of the stem cell niche during embryonic pattern formation.


Cell | 2002

AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis.

Jiří Friml; Eva Benková; Ikram Blilou; Justyna Wišniewska; Thorsten Hamann; Karin Ljung; Scott T. Woody; Göran Sandberg; Ben Scheres; Gerd Jürgens; Klaus Palme

In contrast to animals, little is known about pattern formation in plants. Physiological and genetic data suggest the involvement of the phytohormone auxin in this process. Here, we characterize a novel member of the PIN family of putative auxin efflux carriers, Arabidopsis PIN4, that is localized in developing and mature root meristems. Atpin4 mutants are defective in establishment and maintenance of endogenous auxin gradients, fail to canalize externally applied auxin, and display various patterning defects in both embryonic and seedling roots. We propose a role for AtPIN4 in generating a sink for auxin below the quiescent center of the root meristem that is essential for auxin distribution and patterning.


Nature | 2007

PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development.

Carla Galinha; Hugo Hofhuis; Marijn Luijten; Viola Willemsen; Ikram Blilou; Renze Heidstra; Ben Scheres

Factors with a graded distribution can program fields of cells in a dose-dependent manner, but no evidence has hitherto surfaced for such mechanisms in plants. In the Arabidopsis thaliana root, two PLETHORA (PLT) genes encoding AP2-domain transcription factors have been shown to maintain the activity of stem cells. Here we show that a clade of four PLT homologues is necessary for root formation. Promoter activity and protein fusions of PLT homologues display gradient distributions with maxima in the stem cell area. PLT activities are largely additive and dosage dependent. High levels of PLT activity promote stem cell identity and maintenance; lower levels promote mitotic activity of stem cell daughters; and further reduction in levels is required for cell differentiation. Our findings indicate that PLT protein dosage is translated into distinct cellular responses.


Cell | 2005

The RETINOBLASTOMA-RELATED Gene Regulates Stem Cell Maintenance in Arabidopsis Roots

Marjolein Wildwater; Ana Campilho; José Manuel Pérez-Pérez; Renze Heidstra; Ikram Blilou; Henrie Korthout; Jayanta Chatterjee; Luisa Mariconti; Wilhelm Gruissem; Ben Scheres

The maintenance of stem cells in defined locations is crucial for all multicellular organisms. Although intrinsic factors and signals for stem cell fate have been identified in several species, it has remained unclear how these connect to the ability to reenter the cell cycle that is one of the defining properties of stem cells. We show that local reduction of expression of the RETINOBLASTOMA-RELATED (RBR) gene in Arabidopsis roots increases the amount of stem cells without affecting cell cycle duration in mitotically active cells. Conversely, induced RBR overexpression dissipates stem cells prior to arresting other mitotic cells. Overexpression of D cyclins, KIP-related proteins, and E2F factors also affects root stem cell pool size, and genetic interactions suggest that these factors function in a canonical RBR pathway to regulate somatic stem cells. Expression analysis and genetic interactions position RBR-mediated regulation of the stem cell state downstream of the patterning gene SCARECROW.


Plant Physiology | 2013

Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria

Christos Zamioudis; Parthena Mastranesti; Pankaj Dhonukshe; Ikram Blilou; Corné M. J. Pieterse

Beneficial soil-borne Pseudomonas rhizobacteria influence root development and promote growth, independent of their ability to stimulate systemic immunity. Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of the most abundant genera of the root microbiome. Here, by employing a germ-free experimental system, we demonstrate the ability of selected Pseudomonas spp. strains to promote plant growth and drive developmental plasticity in the roots of Arabidopsis (Arabidopsis thaliana) by inhibiting primary root elongation and promoting lateral root and root hair formation. By studying cell type-specific developmental markers and employing genetic and pharmacological approaches, we demonstrate the crucial role of auxin signaling and transport in rhizobacteria-stimulated changes in the root system architecture of Arabidopsis. We further show that Pseudomonas spp.-elicited alterations in root morphology and rhizobacteria-mediated systemic immunity are mediated by distinct signaling pathways. This study sheds new light on the ability of soil-borne beneficial bacteria to interfere with postembryonic root developmental programs.


Nature Protocols | 2006

In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples

Jan Hejátko; Ikram Blilou; Philip B. Brewer; Jiří Friml; Ben Scheres; Eva Benková

High throughput microarray transcription analyses provide us with the expression profiles for large amounts of plant genes. However, their tissue and cellular resolution is limited. Thus, for detailed functional analysis, it is still necessary to examine the expression pattern of selected candidate genes at a cellular level. Here, we present an in situ mRNA hybridization method that is routinely used for the analysis of plant gene expression patterns. The protocol is optimized for whole mount mRNA localizations in Arabidopsis seedling tissues including embryos, roots, hypocotyls and young primary leaves. It can also be used for comparable tissues in other species. Part of the protocol can also be automated and performed by a liquid handling robot. Here we present a detailed protocol, recommended controls and troubleshooting, along with examples of several applications. The total time to carry out the entire procedure is ∼7 d, depending on the tissue used.


Development | 2012

COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis

Massimiliano Sassi; Yanfen Lu; Yonghong Zhang; Juan Wang; Pankaj Dhonukshe; Ikram Blilou; Minqiu Dai; Juan Li; Ximing Gong; Yvon Jaillais; Xuhong Yu; Jan Traas; Ida Ruberti; Haiyang Wang; Ben Scheres; Teva Vernoux; Jian Xu

When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.


Current Biology | 2011

Arabidopsis PLETHORA transcription factors control phyllotaxis.

Kalika Prasad; Stephen P. Grigg; Michalis Barkoulas; Ram Kishor Yadav; Gabino F. Sanchez-Perez; Violaine Pinon; Ikram Blilou; Hugo Hofhuis; Pankaj Dhonukshe; Carla Galinha; Ari Pekka Mähönen; Wally H. Müller; Smita Raman; Arie J. Verkleij; Berend Snel; G. Venugopala Reddy; Miltos Tsiantis; Ben Scheres

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.


Development | 2010

JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism

Hala Hassan; Ben Scheres; Ikram Blilou

In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

Collaboration


Dive into the Ikram Blilou's collaboration.

Top Co-Authors

Avatar

Ben Scheres

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuchen Long

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jian Xu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jiří Friml

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Teva Vernoux

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge