Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ikuo Homma is active.

Publication


Featured researches published by Ikuo Homma.


Immunity | 2002

Antigen-Specific T Cell Sensitization Is Impaired in IL-17-Deficient Mice, Causing Suppression of Allergic Cellular and Humoral Responses

Susumu Nakae; Yutaka Komiyama; Aya Nambu; Katsuko Sudo; Michiko Iwase; Ikuo Homma; Kenji Sekikawa; Masahide Asano; Yoichiro Iwakura

Interleukin-17 (IL-17) is a proinflammatory cytokine produced by T cells. The involvement of IL-17 in human diseases has been suspected because of its detection in sera from asthmatic patients and synovial fluids from arthritic patients. In this study, we generated IL-17-deficient mice and investigated the role of IL-17 in various disease models. We found that contact, delayed-type, and airway hypersensitivity responses, as well as T-dependent antibody production, were significantly reduced in the mutant mice, while IL-17 deficiency of donor T cells did not affect acute graft-versus-host reaction. The results suggest that impaired responses were caused by the defects of allergen-specific T cell activation. Our findings indicate that IL-17 plays an important role in activating T cells in allergen-specific T cell-mediated immune responses.


The Journal of Neuroscience | 2003

A novel functional neuron group for respiratory rhythm generation in the ventral medulla.

Hiroshi Onimaru; Ikuo Homma

We visualized respiratory neuron activity covering the entire ventral medulla using optical recordings in a newborn rat brainstem–spinal cord preparation stained with voltage-sensitive dye. We measured optical signals from several seconds before to several seconds after the inspiratory phase using the inspiratory motor nerve discharge as the trigger signal; we averaged the optical signals of 50–150 respiratory cycles to obtain an optical image correlating particularly to inspiratory activity. The optical images we obtained from the ventral approach indicated that neuron activity first appeared during the respiratory cycle in the limited region of the rostral ventrolateral medulla (RVLM), preceding the onset of inspiratory activity by ∼500 msec. During the inspiratory phase, plateau activity appeared in the more caudal ventrolateral medulla at the level of the most rostral roots of the XIIth nerve. Comparison with electrophysiological recordings from respiratory neurons in the RVLM suggested that the optical signals preceding the inspiratory burst reflect preinspiratory neuron activity in this area. This RVLM area was determined to be ventrolateral to the facial nucleus and close to the ventral surface. We referred to this functional neuron group as the para-facial respiratory group (pFRG). Partial, bilateral electrical lesioning of the pFRG significantly reduced the respiratory frequency, together with changes in the spatiotemporal pattern of respiratory neuron activity. Our findings suggest that the pFRG comprises a neuronal population that is involved in the primary respiratory rhythm generation in the rostrocaudally extending respiratory neuron network of the medulla.


Progress in Neurobiology | 1999

Respiratory network function in the isolated brainstem-spinal cord of newborn rats.

Klaus Ballanyi; Hiroshi Onimaru; Ikuo Homma

The in vitro brainstem-spinal cord preparation of newborn rats is an established model for the analysis of respiratory network functions. Respiratory activity is generated by interneurons, bilaterally distributed in the ventrolateral medulla. In particular non-NMDA type glutamate receptors constitute excitatory synaptic connectivity between respiratory neurons. Respiratory activity is modulated by a diversity of neuroactive substances such as serotonin, adenosine or norepinephrine. Cl(-)-mediated IPSPs provide a characteristic pattern of membrane potential fluctuations and elevation of the interstitial concentration of (endogenous) GABA or glycine leads to hyperpolarisation-related suppression of respiratory activity. Respiratory rhythm is not blocked upon inhibition of IPSPs with bicuculline, strychnine and saclofen. This indicates that GABA- and glycine-mediated mutual synaptic inhibition is not crucial for in vitro respiratory activity. The primary oscillatory activity is generated by neurons of a respiratory rhythm generator. In these cells, a set of intrinsic conductances such as P-type Ca2+ channels, persistent Na+ channels and G(i/o) protein-coupled K+ conductances mediates conditional bursting. The respiratory rhythm generator shapes the activity of an inspiratory pattern generator that provides the motor output recorded from cranial and spinal nerve rootlets in the preparation. Burst activity appears to be maintained by an excitatory drive due to tonic synaptic activity in concert with chemostimulation by H+. Evoked anoxia leads to a sustained decrease of respiratory frequency, related to K+ channel-mediated hyperpolarisation, whereas opiates or prostaglandins cause longlasting apnea due to a fall of cellular cAMP. The latter observations show that this in vitro model is also suited for analysis of clinically relevant disturbances of respiratory network function.


Journal of Immunology | 2001

Intervention of Thymus and Activation-Regulated Chemokine Attenuates the Development of Allergic Airway Inflammation and Hyperresponsiveness in Mice

Shin Kawasaki; Hajime Takizawa; Hiroyuki Yoneyama; Takashi Nakayama; Ryuichi Fujisawa; Masahiko Izumizaki; Toshio Imai; Osamu Yoshie; Ikuo Homma; Kazuhiko Yamamoto; Kouji Matsushima

Thymus- and activation-regulated chemokine (TARC; CCL17) is a lymphocyte-directed CC chemokine that specifically chemoattracts CC chemokine receptor 4-positive (CCR4+) Th2 cells. To establish the pathophysiological roles of TARC in vivo, we investigated here whether an mAb against TARC could inhibit the induction of asthmatic reaction in mice elicited by OVA. TARC was constitutively expressed in the lung and was up-regulated in allergic inflammation. The specific Ab against TARC attenuated OVA-induced airway eosinophilia and diminished the degree of airway hyperresponsiveness with a concomitant decrease in Th2 cytokine levels. Our results for the first time indicate that TARC is a pivotal chemokine for the development of Th2-dominated experimental allergen-induced asthma with eosinophilia and AHR. This study also represents the first success in controlling Th2 cytokine production in vivo by targeting a chemokine.


The Journal of Physiology | 2002

Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat

Wiktor A. Janczewski; Hiroshi Onimaru; Ikuo Homma; Jack L. Feldman

We report that after spontaneous breathing movements are stopped by administration of opioids (opioid‐induced apnoea) in neonatal rats, abdominal muscles continue to contract at a rate similar to that observed during periods of ventilation. Correspondingly, in vitro bath application of a μ opioid receptor agonist suppresses the activity of the fourth cervical root (C4) supplying the diaphragm, but not the rhythmic activity of the first lumbar root (L1) innervating the abdominal muscles. This indicates the existence of opioid‐resistant rhythmogenic neurones and a neuronal pathway transmitting their activity to the abdominal motoneurones. We have investigated this pathway by using a brainstem‐spinal cord preparation of the neonatal rat. We identified bulbospinal neurones with a firing pattern identical to that of the L1 root. These neurones were located caudal to the obex in the vicinity of the nucleus retroambiguus. Resting potentials ranged from ‐49 to ‐40 mV (mean ±s.d. ‐44.0 ± 4.3 mV). The mean input resistance was 315.5 ± 54.8 MΩ. The mean antidromic latency from the L1 level was 42.8 ± 4.4 ms. Axons crossed the midline at the level of the cell body. The activity pattern of the bulbospinal neurones and the L1 root consisted of two bursts per respiratory cycle with a silent period during inspiration. This pattern is characteristic of preinspiratory neurones. We found that 11 % of the preinspiratory neurones projected to the area where the bulbospinal neurones were located. These preinspiratory neurones were found in the rostral ventrolateral medulla close (200‐350 μm) to the ventral surface at the level of the rostral half of the nucleus retrofacialis. Our data suggest the operation of a disynaptic pathway from the preinspiratory neurones to the L1 motoneurones in the in vitro preparation. We propose that the same pathway is responsible for rhythmic activation of the abdominal muscles during opioid‐induced apnoea in the newborn rat.


Experimental Physiology | 2008

Breathing rhythms and emotions

Ikuo Homma; Yuri Masaoka

Respiration is primarily regulated for metabolic and homeostatic purposes in the brainstem. However, breathing can also change in response to changes in emotions, such as sadness, happiness, anxiety or fear. Final respiratory output is influenced by a complex interaction between the brainstem and higher centres, including the limbic system and cortical structures. Respiration is important in maintaining physiological homeostasis and co‐exists with emotions. In this review, we focus on the relationship between respiration and emotions by discussing previous animal and human studies, including studies of olfactory function in relation to respiration and the piriform–amygdala in relation to respiration. In particular, we discuss oscillations of piriform–amygdala complex activity and respiratory rhythm.


Brain Research | 1988

Primary respiratory rhythm generator in the medulla of brainstem-spinal cord preparation from newborn rat

Hiroshi Onimaru; Akiko Arata; Ikuo Homma

It has been previously demonstrated that rhythmically firing neurons (Pre-I neurons) preceding cervical root (C4 or C5) inspiratory activity, localized in the rostral ventrolateral medulla (RVL), are important in the generation of the basic respiratory rhythm in brainstem-spinal cord preparations from newborn rats. We examined the effects of single and continuous electrical stimulation applied to the RVL on Pre-I and C4 activities in these preparations. We verified that the phase of respiratory rhythm was reset when Pre-I firing was induced in both right and left RVL by single shock stimulation, whether C4 activity appeared or not. Lower frequency and intensity of continuous pulse train stimulation in the RVL enhanced Pre-I activity, and hence C4 activity, whereas higher frequency and intensity inhibited both. The results suggest that synchronous burst activity between the right and left Pre-I neurons must be above a certain level (in its intraburst firing rate) to trigger C4 inspiratory activity and, therefore, that cooperation among Pre-I neurons is important for induction of rhythmic inspiratory drive. After bilateral lesions of the caudal ventrolateral medulla, Pre-I neurons retained their rhythmic activity, while C4 activity disappeared. Present results further confirmed our hypothesis that Pre-I neurons are the primary generator of respiratory rhythm. We propose a hypothetical model of the generation of rhythmic respiratory activity.


Brain Research | 1987

Respiratory rhythm generator neurons in medulla of brainstem-spinal cold preparation from newborn rat

Hiroshi Onimaru; Ikuo Homma

Rhythmic neuronal activity preceding C4 inspiratory activity (Pre-I neuron activity) was recorded in rostral ventrolateral (near ventral surface) medulla of brainstem-spinal cord preparation isolated from newborn rat. Vagal stimulation inhibited C4 activity but not Pre-I neuron activity. Rhythmic Pre-I neuron-like activity was still recorded in the block of rostral medulla after transection. Results suggest that Pre-I neurons generate the basic respiratory rhythm and trigger inspiratory activity.


Experimental Brain Research | 1989

Firing properties of respiratory rhythm generating neurons in the absence of synaptic transmission in rat medulla in vitro

Hiroshi Onimaru; Akiko Arata; Ikuo Homma

SummaryIt has previously been demonstrated that Pre-I neurons, localized in the rostral ventrolateral medulla, are important in the generation of the primary respiratory rhythm in brainstemspinal cord preparations from newborn rats. To investigate whether or not Pre-I neurons have endogenous pacemaker properties, we examined Pre-I neuron activity before and after chemical synaptic transmission was blocked by incubation in a low Ca2+ (0.2 mM), high Mg2+ (5 mM) solution (referred to here as low Ca). After incubation for about 30 min in low Ca, 28 (52%, type-1) out of 54 neurons tested in 27 preparations retained apparent rhythmic (phasic) activity after complete disappearance of C4 inspiratory activity. Sixteen neurons (30%, type-2) fired tonically and 10 (18%, type-3) were silent. We examined the effects of synaptic blockade on 14 inspiratory neurons in the RVL. The firing of all 14 neurons in 9 preparations disappeared concomitantly with the disappearance of C4 activity in low Ca. When the pH of the low Ca solution was lowered with a decrease in NaHCO3 concentration from 7.4 to 7.1, the firing rate of the Pre-I neurons (type-1) increased from 12 to 18/min. In conclusion, the generator of respiratory rhythm in the newborn rat is probably a neuronal network with chemical synapses that functions mainly through the endogenous Pre-I pacemaker cells. Intrinsic chemoreception in the rhythm generator is probably important in frequency control of respiratory rhythm.


Pflügers Archiv: European Journal of Physiology | 1992

Whole cell recordings from respiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats

Hiroshi Onimaru; Ikuo Homma

In brainstem-spinal cord preparations isolated from newborn rats, a whole cell recording technique was applied to record membrane potentials of inspiratory (Insp) and pre-inspiratory (Pre-I) neurons in the ventrolateral medulla. Labelling of these respiratory neurons with Lucifer Yellow allowed analysis of their locations and morphology. Intracellular membrane potentials from 25 Insp neurons were recorded. Average resting membrane potential was −49 mV (n=25) and input resistance was 306 MΩ. Insp neurons were classified into three types from the patterns of synaptic potentials. Type I neurons (n=11) had a high probability of excitatory postsynaptic potentials (EPSPs) in the pre- and post-inspiratory phases. Type II neurons (n=7) showed abrupt transition to the burst phase from the resting potential level without increased EPSPs in the preinspiratory phase. Type III neurons (n=7) were hyperpolarized by inhibitory postsynaptic potentials (IPSPs) in the pre- and post-inspiratory phases. These Insp neurons, located in the ventrolateral medulla 80–490μm from the ventral surface, were 10–30 μm in diameter, and had various soma shapes (pyramidal, spherical or fusiform). Intracellular membrane potentials from 24 Pre-I neurons were recorded. The average resting membrane potential was −45 mV (n=24), and the input resistance was 320 MΩ. Typical Pre-I neurons showed fairly great depolarization accompanied by action potentials during their burst phase and repolarization during the inspiratory phase. Most Pre-I neurons appeared to have a high level of synaptic activity. These cells were located in the ventrolateral medulla 50–440 μm below the ventral surface and had pyramidal or fusiform somas of 10–25 μm in diameter. Stimulation of the ipsilateral IXth, Xth roots or the spinal cord (C3 level) induced orthodromic responses in most Insp or Pre-I neurons. An antidromic action potential was induced in only one Pre-I neuron by stimulation at the ipsilateral C3 level. Many Insp or Pre-I neurons had dendrites that terminated close to the ventral surface of the medulla. The present study revealed postsynaptic activity of respiratory neurons in the rostral ventrolateral medulla, which is consistent with the excitatory and inhibitory synaptic connections from Pre-I neurons to Insp neurons, and inhibitory synaptic connections for Insp neurons to Pre-I neurons.

Collaboration


Dive into the Ikuo Homma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato Sibuya

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Akiko Arata

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge