Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Il-Ryong Choi is active.

Publication


Featured researches published by Il-Ryong Choi.


Plant and Cell Physiology | 2011

Gene Structures, Classification, and Expression Models of the AP2/EREBP Transcription Factor Family in Rice

Akhter Most Sharoni; Mohammed Nuruzzaman; Kouji Satoh; Takumi Shimizu; Hiroaki Kondoh; Takahide Sasaya; Il-Ryong Choi; Toshihiro Omura; Shoshi Kikuchi

We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.


Plant Physiology | 2012

Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice

David De Vleesschauwer; Evelien Van Buyten; Kouji Satoh; Johny Balidion; Ramil Mauleon; Il-Ryong Choi; Casiana Vera-Cruz; Shoshi Kikuchi; Monica Höfte

Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.


Journal of General Virology | 2010

Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection

Kouji Satoh; Hiroaki Kondoh; Takahide Sasaya; Takumi Shimizu; Il-Ryong Choi; Toshihiro Omura; Shoshi Kikuchi

Rice stripe disease, caused by rice stripe virus (RSV), is one of the major virus diseases in east Asia. Rice plants infected with RSV usually show symptoms such as chlorosis, weakness, necrosis in newly emerged leaves and stunting. To reveal rice cellular systems influenced by RSV infection, temporal changes in the transcriptome of RSV-infected plants were monitored by a customized rice oligoarray system. The transcriptome changes in RSV-infected plants indicated that protein-synthesis machineries and energy production in the mitochondrion were activated by RSV infection, whereas energy production in the chloroplast and synthesis of cell-structure components were suppressed. The transcription of genes related to host-defence systems under hormone signals and those for gene silencing were not activated at the early infection phase. Together with concurrent observation of virus concentration and symptom development, such transcriptome changes in RSV-infected plants suggest that different sets of various host genes are regulated depending on the development of disease symptoms and the accumulation of RSV.


PLOS ONE | 2007

Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

Kouji Satoh; Koji Doi; Toshifumi Nagata; Naoki Kishimoto; Kohji Suzuki; Yasuhiro Otomo; Jun Kawai; Mari Nakamura; Tomoko Hirozane-Kishikawa; Saeko Kanagawa; Takahiro Arakawa; Juri Takahashi-Iida; Mitsuyoshi Murata; Noriko Ninomiya; Daisuke Sasaki; Shiro Fukuda; Michihira Tagami; Harumi Yamagata; Kanako Kurita; Kozue Kamiya; Mayu Yamamoto; Ari Kikuta; Takahito Bito; Nahoko Fujitsuka; Kazue Ito; Hiroyuki Kanamori; Il-Ryong Choi; Yoshiaki Nagamura; Takashi Matsumoto; Kazuo Murakami

Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.


Molecular Plant-microbe Interactions | 2010

Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus.

Jonghee Lee; Muhammad Muhsin; Genelou A. Atienza; Do-Yeon Kwak; Suk-Man Kim; Teresa B. De Leon; Enrique R. Angeles; Edgardo Coloquio; Hiroaki Kondoh; Kouji Satoh; Rogelio C. Cabunagan; Pepito Q. Cabauatan; Shoshi Kikuchi; Hei Leung; Il-Ryong Choi

Rice tungro disease (RTD) is a serious constraint to rice production in South and Southeast Asia. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Rice cv. Utri Merah is resistant to RTSV. To identify the gene or genes involved in RTSV resistance, the association of genotypic and phenotypic variations for RTSV resistance was examined in backcross populations derived from Utri Merah and rice germplasm with known RTSV resistance. Genetic analysis revealed that resistance to RTSV in Utri Merah was controlled by a single recessive gene (tsv1) mapped within an approximately 200-kb region between 22.05 and 22.25 Mb of chromosome 7. A gene for putative translation initiation factor 4G (eIF4G(tsv1)) was found in the tsv1 region. Comparison of eIF4G(tsv1) gene sequences among susceptible and resistant plants suggested the association of RTSV resistance with one of the single nucleotide polymorphism (SNP) sites found in exon 9 of the gene. Examination of the SNP site in the eIF4G(tsv1) gene among various rice plants resistant and susceptible to RTSV corroborated the association of SNP or deletions in codons for Val(1060-1061) of the predicted eIF4G(tsv1) with RTSV resistance in rice.


PLOS ONE | 2011

Relationship between Symptoms and Gene Expression Induced by the Infection of Three Strains of Rice dwarf virus

Kouji Satoh; Takumi Shimizu; Hiroaki Kondoh; Akihiro Hiraguri; Takahide Sasaya; Il-Ryong Choi; Toshihiro Omura; Shoshi Kikuchi

Background Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which often results in severe yield losses of rice in East Asian countries. The disease symptoms are stunted growth, chlorotic specks on leaves, and delayed and incomplete panicle exsertion. Three RDV strains, O, D84, and S, were reported. RDV-S causes the most severe symptoms, whereas RDV-O causes the mildest. Twenty amino acid substitutions were found in 10 of 12 virus proteins among three RDV strains. Methodology/Principal Findings We analyzed the gene expression of rice in response to infection with the three RDV strains using a 60-mer oligonucleotide microarray to examine the relationship between symptom severity and gene responses. The number of differentially expressed genes (DEGs) upon the infection of RDV-O, -D84, and -S was 1985, 3782, and 6726, respectively, showing a correlation between the number of DEGs and symptom severity. Many DEGs were related to defense, stress response, and development and morphogenesis processes. For defense and stress response processes, gene silencing-related genes were activated by RDV infection and the degree of activation was similar among plants infected with the three RDV strains. Genes for hormone-regulated defense systems were also activated by RDV infection, and the degree of activation seemed to be correlated with the concentration of RDV in plants. Some development and morphogenesis processes were suppressed by RDV infection, but the degree of suppression was not correlated well with the RDV concentration. Conclusions/Significance Gene responses to RDV infection were regulated differently depending on the gene groups regulated and the strains infecting. It seems that symptom severity is associated with the degree of gene response in defense-related and development- and morphogenesis-related processes. The titer levels of RDV in plants and the amino acid substitutions in RDV proteins could be involved in regulating such gene responses.


Journal of Virological Methods | 2010

Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay

Dung Tien Le; Osamu Netsu; Tamaki Uehara-Ichiki; Takumi Shimizu; Il-Ryong Choi; Toshihiro Omura; Takahide Sasaya

A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was established for the detection of nine viruses from infected rice plants, including rice black-streaked dwarf virus (RBSDV), rice dwarf virus (RDV), rice gall dwarf virus (RGDV), rice ragged stunt virus (RRSV), rice transitory yellowing virus (RTYV), rice stripe virus (RSV), rice grassy stunt virus (RGSV), rice tungro spherical virus (RTSV), and rice tungro bacilliform virus (RTBV). Virus-specific primer sets were designed from the genome sequences of these viruses. By the combination of RNA rapid extraction and RT-LAMP, these nine viruses could be detected within 2h from infected rice plants. The sensitivities of the assays were either higher than (for RSV, RTBV, and RTYV) or similar (for RDV) to those of one-step RT-PCR. Furthermore, RTBV and RTSV were detected not only in infected rice plants but also in viruliferous insect vectors. The RT-LAMP assays may facilitate studies on rice disease epidemiology, outbreak surveillance, and molecular pathology.


Plant Pathology Journal | 2009

Complete Genome Sequence of the RNAs 3 and 4 Segments of Rice stripe virus Isolates in Korea and their Phylogenetic Relationships with Japan and China Isolates

Miranda Gilda Jonson; Hong-Soo Choi; Jeong-Soo Kim; Il-Ryong Choi; Kook-Hyung Kim

The complete genome sequences of RNA3 and RNA4 of the 13 different Rice stripe virus (RSV) isolates were determined and characterized in this study to address the possible causes of the recent re-emergence of RSV that affected many rice fields in Korea. The genome size of each RNA segment varied among isolates and significant differences were observed in the intergenic region. There was up to 4% average divergence in the RNA4 nucleotide sequence among 13 Korean isolates and only 1.4% in the RNA3. Phylogenetic relationships among different Korean isolates revealed that there were at least 2 types of RNA3 and 4 distinct types of RNA4 genomes present in Korea. However, Korean isolates with one type of RNA3 predominate over the other while the occurrences of the RSV Korean isolates with the 4 types of RNA4 genome were not correlated to specific geographical areas. Results further indicate that RNA4 had diverged more than RNA3 and these differences in accumulation of mutations in the individual RNA segments indicate that genetic reassortment were likely to contribute to the genetic divergence in the 13 Korean isolates. All of the Korean-RNA3 sequences except for one isolate grouped with Chinese isolates (JY and Z). In contrast, the RNA 4 sequences segregated together with either Chinese (JY and Z) and Japanese (M and T) isolates but genetic relationships of Korean isolates- RNAs 3 and 4 segments to Chinese-Y isolate were low. Altogether, these results suggest that the occurrence of mixtures of RNAs 3 and 4 genotypes in the natural population of RSV may have contributed to the sudden outbreak in Korea.


Plant Disease | 2007

Characterization of Oryza rufipogon–Derived Resistance to Tungro Disease in Rice

Yuji Shibata; Rogelio C. Cabunagan; Pepito Q. Cabauatan; Il-Ryong Choi

Rice tungro disease (RTD) is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV), both of which are transmitted by green leafhoppers (GLH). In order to define the resistance against RTD in rice cv. Matatag 9 which was developed by interspecific hybridization between RTD-susceptible cv. IR64 and Oryza rufipogon, the reactions of Matatag 9 to the viruses and GLH were evaluated in comparison with RTD-susceptible and -resistant rice cultivars. The incidences of infection with RTSV and RTBV in Matatag 9 were significantly lower than those in the susceptible parent cv. IR64; however, no substantial differences in virus accumulation were observed between IR64 and Matatag 9 once infected with the viruses. Symptoms in Matatag 9 infected with RTBV and RTSV were milder than those observed in IR64. A higher level of antixenosis to GLH was observed in Matatag 9 compared with IR64. The levels of antibiosis against GLH in Matatag 9 were comparable with those in another GLH-resistant cultivar, and significantly higher than those in RTD-susceptible cultivars. Collectively, these results suggest that tolerance to tungro viruses and resistance to GLH both contribute to the apparent resistance to RTD in Matatag 9, although possible involvement of other resistance mechanisms cannot be excluded.


Molecular Plant-microbe Interactions | 2009

Suppression of Two Tungro Viruses in Rice by Separable Traits Originating from Cultivar Utri Merah

Jaymee R. Encabo; Pepito Q. Cabauatan; Rogelio C. Cabunagan; Kouji Satoh; Jonghee Lee; Do-Yeon Kwak; Teresa B. De Leon; Reena Jesusa A. Macalalad; Hiroaki Kondoh; Shoshi Kikuchi; Il-Ryong Choi

Rice tungro disease (RTD) is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV) transmitted by green leafhoppers. Rice cv. Utri Merah is highly resistant to RTD. To define the RTD resistance of Utri Merah, near-isogenic lines (NIL, BC(5) or BC(6)) developed from Utri Merah and susceptible cv. Taichung Native 1 (TN1) were evaluated for reactions to RTSV and RTBV. TW16 is an NIL (BC(5)) resistant to RTD. RTBV was able to infect both TN1 and TW16 but the levels of RTBV were usually significantly lower in TW16 than in TN1. Infection of RTSV was confirmed in TN1 by a serological test but not in TW16. However, the global gene-expression pattern in an RTSV-resistant NIL (BC(6)), TW16-69, inoculated with RTSV indicated that RTSV can also infect the resistant NIL. Infection of RTSV in TW16 was later confirmed by reverse-transcription polymerase chain reaction but the level of RTSV was considerably lower in TW16 than in TN1. Examination for virus accumulation in another NIL (BC(6)), TW16-1029, indicated that all plants of TW16-1029 were resistant to RTSV, whereas the resistance to RTBV and symptom severity were segregating among the individual plants of TW16-1029. Collectively, these results suggest that RTD resistance of Utri Merah involves suppression of interacting RTSV and RTBV but the suppression trait for RTSV and for RTBV is inherited separately.

Collaboration


Dive into the Il-Ryong Choi's collaboration.

Top Co-Authors

Avatar

Kouji Satoh

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rogelio C. Cabunagan

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Takahide Sasaya

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihiro Omura

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Do-Yeon Kwak

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Jonghee Lee

Electronics and Telecommunications Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hei Leung

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jaymee R. Encabo

International Rice Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge