Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Il Soo Moon is active.

Publication


Featured researches published by Il Soo Moon.


Journal of Life Science | 2007

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments

Sang Jin Kim; Chul Hee Lee; Hye Young Park; Sung Su Yea; Won Hee Jang; Sang Kyeong Lee; Yeong Hong Park; Ok Soo Cha; Il Soo Moon; Dae Hyun Seog

A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLC1 and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIP3). The yeast two-hybrid assay demonstrated that the TRP 1, 2 domain-containing region of KLC1 mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of KLC2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLC1 and KIF5B interacted with GST-JSAP1 fusion proteins, but not with GST alone. An antibody to JSAP1 specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.


Experimental and Molecular Medicine | 2015

N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points.

Ariful Islam; Syeda Ridita Sharif; Hyunsook Lee; Dae-Hyun Seog; Il Soo Moon

N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74–96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching.


Experimental and Molecular Medicine | 2003

Nonspecific association of 2',3'-cyclic nucleotide 3'-phosphodiesterase with the rat forebrain postsynaptic density fraction

Sun-Jung Cho; Jae Seob Jung; Seung-Chul Shin; Ingnyol Jin; Bok Hyun Ko; Yunhee Kim Kwon; Haeyoung Suh-Kim; Il Soo Moon

The 2,3-cyclic nucleotide 3-phosphodiesterase (CNP), a protein of unknown function in vivo, is abundantly expressed in myelinating glia in two isoforms, CNP1 and CNP2. In this study, immunoblot analysis showed that CNP1 is the major isoform in adult forebrain, and that both isoforms are included in the postsynaptic density (PSD) fraction and tyrosine-phosphorylated at the basal level. However, subcellular distribution and detergent extraction data showed that CNP is nonspecifically associated with the PSD fraction. Immunocytochemistry revealed that CNP is detected, in a weak but punctate pattern, in dissociated rat hippocampal neurons of 3 days to 2 weeks in vitro. The CNP-positive punctae were distributed throughout soma and dendrites, and distinct from PSD95-positive ones. Immunoblot analysis indicated that CNP is also expressed in neuronal stem cell lines, HiB5 and F11. Interestingly, in addition to the known two isoforms, a new CNP isoform of MW 45 kDa was expressed in these cell lines and was the major type of isoform in F11 cells. Taken together, our data suggest that CNP is expressed in the early stage of in vitro development and nonspecifically included in the adult rat PSD fraction.


Journal of Life Science | 2012

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain

Won Hee Jang; Sang Jin Kim; Young Joo Jeong; Hee Jae Jun; Il Soo Moon; Dae-Hyun Seog

A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP antibody co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.


Journal of Life Science | 2015

Muskelin Interacts with Multi-PDZ Domain Protein 1 (MUPP1) through the PDZ Domain

Won Hee Jang; Young Joo Jeong; Sun Hee Choi; Won Hee Lee; Mooseong Kim; Sang-Jin Kim; Sang-Hwa Urm; Il Soo Moon; Dae-Hyun Seog

Protein-protein interactions have a critical role in the regulation of many cellular functions. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain is one of domains that mediate protein-protein interactions. PDZ domains typically bind to the specific motif at the carboxyl (C)-terminal end of partner proteins. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, serves a scaffolding function for structure proteins and signaling proteins, but the cellular function of MUPP1 has not been fully elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and muskelin. Muskelin was recently identified as a GABA A receptor (GABA A R) α1 subunit binding protein and known to have a role in receptor endocytosis and degradation. Muskelin bound to the 3 rd PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of muskelin was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, muskelin but not the C-terminal deleted muskelin was co-immunoprecipitated with MUPP1. In addition, MUPP1 co-localized with muskelin at the same subcellular region in cells. These findings collectively suggest that MUPP1 or its interacting proteins could modulate GABAAR trafficking and turnover through the interaction with muskelin.


Journal of Life Science | 2014

Parkin Interacts with the PDZ Domain of Multi-PDZ Domain Protein MUPP1

Won Hee Jang; Young Joo Jeong; Sun Hee Choi; Won Hee Lee; Mooseong Kim; Sang-Jin Kim; Sang-Hwa Urm; Il Soo Moon; Dae-Hyun Seog

The localization to specific subcellular sites and the regulation of cell surface receptors and channels are crucial for proper functioning. Postsynaptic density-95/Disks large/Zonula occludens-1 (PDZ)-domain is involved in recognition of and interaction between various proteins, by which the localization and the regulation are mediated. Multi-PDZ domain protein 1 (MUPP1) contains 13 PDZ domains. MUPP1 serves a scaffolding function for structure proteins and signaling proteins, but the mechanism how MUPP1 is stabilized and signalized has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and Parkin. Parkin is an E3 ubiquitin ligase. Loss-of-function mutations of Parkin gene are known to cause an autosomal recessive juvenile parkinsonism. Parkin bound to the 12th PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of Parkin has a type II PDZ-association motif, which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, Parkin co-localized with MUPP1. When co-expressed with ubiquitin in HEK-293T cells, MUPP1 has been strongly ubiquitinated by Parkin. These findings collectively suggest that MUPP1 is a novel substrate of Parkin and its function or stability could be modulated by Parkin-mediated ubiquitination.


Journal of Life Science | 2009

Microarray Analysis of Gene Expression by Rhei Rhizoma Water Extracts in a Hypoxia Model of Cultured Neurons

HyunSook Lee; Jinyoung Song; Il Soo Moon

In this study, we investigated the effect of Rhei Rhizoma (RR; 大黃) water extract on gene expression in a hypoxia model of cultured rat hippocampal neurons. RR water extract (2.5 μg/ml) was added to the culture media on day 10 in vitro (DIV10), and a hypoxic shock (2% O₂/5% CO₂ , 37℃, 3 h) was given on DIV13. After maintaining the cultures in normoxia for 24 hr, total RNA was isolated and used for microarray analysis. The MA-plot indicated that most genes were up- or downregulated within 2-fold. There were more downregulated genes (725 ea) than upregulated ones (472 ea) when larger than Global M value 0.2 (i.e., >15% increase) or smaller than Global M value -0.2 (i.e., >15% decrease) were considered. Antiapoptosis genes such as Tegt (2.4-fold), Nfkb1 (2.4-fold) Veg (1.8-fold), Ngfr (1.6-fold) were upregulated, while pro-apoptosis genes such as Bad (-64%), Cstb (-66%) were downregulated. Genes for combating environmental stress (stress response genes) such as Defb3 (2.7-fold), Cygb (2.2-fold), Ahsg (2.18-fold), Alox5 (2-fold) were upregulated. Genes for cell proliferation (cell cycle-related genes) such as Erbb2 (1.84-fold), Mapk12 gene (1.8-fold) was upregulated. Therefore, RR water extracts upregulate many pro-survival genes while downregulating many pro-death genes. It is interpreted that these genes, in combination with other regulated genes, can promote neuronal survival in a stress such as hypoxia.


Journal of Life Science | 2008

γ-Aminobutyric Acid Transporter 2 Binds to the PDZ Domain of Mammalian Lin-7

Dae-Hyun Seog; Il Soo Moon

Neurotransmitter transporters, which remove neurotransmittesr from the synaptic cleft, are regulated by second messenger such as protein kinases and binding proteins. Neuronal γ-aminobutyric acid transporters (GATs) are responsible for removing the inhibitory neurotransmitter γ-aminobutyric acid (GABA) from the synaptic cleft. γ-aminobutyric acid transporters 2 (GAT2/BGT1) is involved in regulating neurotransmitter recycling, but the mechanism how they are stabilized and regulated by the specific binding protein has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the C-terminal region of GAT2 and found a specific interaction with the mammalian LIN-7b (MALS-2). MALS-2 protein bound to the tail region of GAT2 but not to other GAT members in the yeast two-hybrid assay. The “T-X-L” motif at the C-terminal end of GAT2 is essential for interaction with MALS-2. In addition, this protein showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT2 specifically co-immunoprecipitated MALS associated with GAT2 from mouse brain extracts. These results suggest that MALS may stabilize GAT2 in brain.


Journal of Life Science | 2008

Deep Seawater Increases Dendritic Branches of Cultured Rat Hippocampal Neurons

HyunSook Lee; Kyung Soo Nam; Yun Hee Shon; Il Soo Moon

Deep seawater (DSW; deep ocean water) is pure, rich in inorganic materials which have attracted attention for various applications. In this study we investigated the effects of the DSW upwelled from the East Sea, offshore Yang Yang (Korea) on the morphological differentiation of cultured rat hippocampal neurons, which were grown in the minimal essential medium containing 10% (v/v) fetal bo-vine serum and 25% (v/v) DSW with various hardness. DSW had no effect on initial morphological differentiation (17 hr post-plating). When observed on DIV3, 7, 14, and 17, low hardness (0 and 200) DSW reduced dendritic branching. However, dendritic branches within 80 μm diameter from the center of soma nearly doubled in neurons grown in hardness 1,000 DSW-containing media. DSW with hardness 600 was more or less same as control groups. These results indicate that DSW with appropriate hardness ameliorates neuronal health.


Journal of Life Science | 2008

Promotion of Synaptic Maturation by Deep Seawater in Cultured Rat Hippocampal Neurons

Seong-Ho Kim; HyunSook Lee; Kyung Soo Nam; Yun Hee Shon; Il Soo Moon

Deep seawater (DSW) refers to water extracted from the ocean, usually at depths of 200 meters or more, which is rich in inorganic materials and has attracted attention for various applications. We investigated the effects of the DSW on the synaptic maturation of cultured rat hippocampal neurons. Immunocytochemical examination of DIV21 showed that PSD-95, αCaMKII, and synGAPα1 clusters were strengthened and coupling rates of SV2 and NR2B were significantly increased in neurons grown in the presence of H-800 and H-1000 DSW. Our results indicate that DSW promotes the formation of excitatory postsynaptic signal transduction complexes NRC/MASC and functional synapses.

Collaboration


Dive into the Il Soo Moon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Jin Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge