Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilana Rogachev is active.

Publication


Featured researches published by Ilana Rogachev.


Plant Physiology | 2008

Gene Expression and Metabolism in Tomato Fruit Surface Tissues

Shira Mintz-Oron; Tali Mandel; Ilana Rogachev; Liron Feldberg; Ofra Lotan; Merav Yativ; Zhonghua Wang; Reinhard Jetter; Ilya Venger; Avital Adato; Asaph Aharoni

The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology.


Science | 2013

Biosynthesis of Antinutritional Alkaloids in Solanaceous Crops Is Mediated by Clustered Genes

Maxim Itkin; Uwe Heinig; Oren Tzfadia; A. J. Bhide; B. Shinde; Pablo D. Cárdenas; Samuel Bocobza; Tamar Unger; Sergey Malitsky; R. Finkers; Y. Tikunov; A. Bovy; Y. Chikate; P. Singh; Ilana Rogachev; Jules Beekwilder; Ashok P. Giri; Asaph Aharoni

From Nasty to Tasty Some of our favorite food crops derive from wild relatives that were distasteful or even toxic. Domestication over many years selected for variants with reduced levels of antinutritional compounds. The wild relatives remain valuable, however, for other traits such as resistance to pathogens, but their use in crop development is complicated by the continued presence of unpalatable compounds. Itkin et al. (p. 175, published online 20 June) elucidate the metabolic pathways and genes directing synthesis of some of these antinutritionals in potato and tomato. Some of the chemicals that domestication has reduced in potato and tomato are derived from clusters of biosynthetic genes. Steroidal glycoalkaloids (SGAs) such as α-solanine found in solanaceous food plants—as, for example, potato—are antinutritional factors for humans. Comparative coexpression analysis between tomato and potato coupled with chemical profiling revealed an array of 10 genes that partake in SGA biosynthesis. We discovered that six of them exist as a cluster on chromosome 7, whereas an additional two are adjacent in a duplicated genomic region on chromosome 12. Following systematic functional analysis, we suggest a revised SGA biosynthetic pathway starting from cholesterol up to the tetrasaccharide moiety linked to the tomato SGA aglycone. Silencing GLYCOALKALOID METABOLISM 4 prevented accumulation of SGAs in potato tubers and tomato fruit. This may provide a means for removal of unsafe, antinutritional substances present in these widely used food crops.


Plant Journal | 2009

TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network

Maxim Itkin; Heike Seybold; Dario Breitel; Ilana Rogachev; Sagit Meir; Asaph Aharoni

After fertilization, the expanding carpel of fleshy fruit goes through a phase change to ripening. Although the role of ethylene signalling in mediating climacteric ripening has been established, knowledge regarding the regulation of ethylene biosynthesis and its association with fruit developmental programs is still lacking. A functional screen of tomato transcription factors showed that silencing of the TOMATO AGAMOUS-LIKE 1 (TAGL1) MADS box gene results in altered fruit pigmentation. Over-expressing TAGL1 as a chimeric repressor suggested a role in controlling ripening, as transgenic tomato fruit showed reduced carotenoid and ethylene levels, suppressed chlorophyll breakdown, and down-regulation of ripening-associated genes. Moreover, fruits over-expressing TAGL1 accumulated more lycopene, and their sepals were swollen, accumulated high levels of the yellow flavonoid naringenin chalcone and contained lycopene. Transient promoter-binding assays indicated that part of the TAGL1 activity in ripening is executed through direct activation of ACS2, an ethylene biosynthesis gene that has recently been reported to be a target of the RIN MADS box factor. Examination of the TAGL1 transcript and its over-expression in the rin mutant background suggested that RIN does not regulate TAGL1 or vice versa. The results also indicated RIN-dependent and -independent processes that are regulated by TAGL1. We also noted that fruit of TAGL1 loss-of-function lines had a thin pericarp layer, indicating an additional role for TAGL1 in carpel expansion prior to ripening. The results add a new component to the current model of the regulatory network that controls fleshy fruit ripening and its association with the ethylene biosynthesis pathway.


Plant Physiology | 2008

Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development

Aaron Fait; Kati Hanhineva; Romina Beleggia; Nir Dai; Ilana Rogachev; Victoria J. Nikiforova; Alisdair R. Fernie; Asaph Aharoni

The anatomy of strawberry (Fragaria × ananassa) fruit, in which the achene is found on the outer part of the fruit, makes it an excellent species for studying the regulation of fruit development. It can provide a model for the cross talk between primary and secondary metabolism, whose role is of pivotal importance in the process. By combining gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry with the aim of addressing the metabolic regulation underlying fruit seed development, we simultaneously analyzed the composition of primary and secondary metabolites, separately, in achene and receptacle during fruit ripening of strawberry cultivar Herut. The results from these analyses suggest that changes in primary and secondary metabolism reflect organ and developmental specificities. For instance, the receptacle was characterized by increases in sugars and their direct derivatives, while the achene was characterized by a major decrease in the levels of carbon- and nitrogen-rich compounds, with the exception of storage-related metabolites (e.g. raffinose). Furthermore, the receptacle, and to a lesser extent the achene, exhibited dynamic fluctuations in the levels and nature of secondary metabolites across the ripening process. In the receptacle, proanthocyanidins and flavonol derivatives characterized mainly early developmental stages, while anthocyanins were abundant in the mature red stage; in the achene, ellagitannin and flavonoids were abundant during early and late development, respectively. Correlation-based network analysis suggested that metabolism is substantially coordinated during early development in either organ. Nonetheless, a higher degree of connectivity within and between metabolic pathways was measured in the achenes. The data are discussed within the context of current models both of the interaction of primary and secondary metabolism and of the metabolic interaction between the different plant organs.


Phytochemistry | 2008

Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria × ananassa) flowers

Kati Hanhineva; Ilana Rogachev; Harri Kokko; Shira Mintz-Oron; Ilya Venger; Sirpa Kärenlampi; Asaph Aharoni

Formation of flower organs and the subsequent pollination process require a coordinated spatial and temporal regulation of particular metabolic pathways. In this study a comparison has been made between the metabolite composition of individual flower organs of strawberry (Fragariaxananassa) including the petal, sepal, stamen, pistil and the receptacle that gives rise to the strawberry fruit. Non-targeted metabolomics analysis of the semi-polar secondary metabolites by the use of UPLC-qTOF-MS was utilized in order to localize metabolites belonging to various chemical classes (e.g. ellagitannins, proanthocyanidins, flavonols, terpenoids, and spermidine derivatives) to the different flower organs. The vast majority of the tentatively identified metabolites were ellagitannins that accumulated in all five parts of the flower. Several metabolite classes were detected predominantly in certain flower organs, as for example spermidine derivatives were present uniquely in the stamen and pistil, and the proanthocyanidins were almost exclusively detected in the receptacle and sepals. The latter organ was also rich in terpenoids (i.e. triterpenoid and sesquiterpenoid derivatives) whereas phenolic acids and flavonols were the predominant classes of compounds detected in the petals. Furthermore, we observed extensive variation in the accumulation of metabolites from the same class in a single organ, particularly in the case of ellagitannins, and the flavonols quercetin, kaempferol and isorhamnetin. These results allude to spatially-restricted production of secondary metabolite classes and specialized derivatives in flowers that take part in implementing the unique program of individual organs in the floral life cycle.


The Plant Cell | 2011

GLYCOALKALOID METABOLISM1 Is Required for Steroidal Alkaloid Glycosylation and Prevention of Phytotoxicity in Tomato

Maxim Itkin; Ilana Rogachev; Noam Alkan; Tally Rosenberg; Sergey Malitsky; Laura Masini; Sagit Meir; Yoko Iijima; Koh Aoki; Ric C. H. de Vos; Dov Prusky; Saul Burdman; Jules Beekwilder; Asaph Aharoni

Steroidal alkaloids (SAs) are specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. In this study, the role of GLYCOALKALOID METABOLISM1 (GAME1) in the biosynthesis of tomato SAs was revealed, highlighting the importance of GAME1 in SA glycosylation and in reducing the toxicity of SA metabolites to the plant cell. Steroidal alkaloids (SAs) are triterpene-derived specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. Their biosynthesis involves the action of glycosyltransferases to form steroidal glycoalkaloids (SGAs). To elucidate the metabolism of SGAs in the Solanaceae family, we examined the tomato (Solanum lycopersicum) GLYCOALKALOID METABOLISM1 (GAME1) gene. Our findings imply that GAME1 is a galactosyltransferase, largely performing glycosylation of the aglycone tomatidine, resulting in SGA production in green tissues. Downregulation of GAME1 resulted in an almost 50% reduction in α-tomatine levels (the major SGA in tomato) and a large increase in its precursors (i.e., tomatidenol and tomatidine). Surprisingly, GAME1-silenced plants displayed growth retardation and severe morphological phenotypes that we suggest occur as a result of altered membrane sterol levels caused by the accumulation of the aglycone tomatidine. Together, these findings highlight the role of GAME1 in the glycosylation of SAs and in reducing the toxicity of SA metabolites to the plant cell.


Proceedings of the National Academy of Sciences of the United States of America | 2013

High-resolution metabolic mapping of cell types in plant roots

Arieh Moussaieff; Ilana Rogachev; Leonid Brodsky; Sergey Malitsky; Ted Toal; Heather Belcher; Merav Yativ; Siobhan M. Brady; Philip N. Benfey; Asaph Aharoni

Significance Analyzing metabolite composition offers a powerful tool for understanding gene function and regulatory processes. Here, we present nontargeted metabolomics assays of five Arabidopsis GFP-tagged lines representing core cell types in the plant root, providing a metabolic map of an organ, composed of its different cell types. Fifty metabolites were putatively identified. The most prominent groups were glucosinolates, phenylpropanoids, and dipeptides. Metabolites were differentially abundant across root cell types and in many cases, this abundance did not correlate with transcript expression, suggesting non–cell-autonomous mechanisms responsible for their targeted localization. Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations.


New Phytologist | 2011

Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics

Annick Moing; Asaph Aharoni; Benoît Biais; Ilana Rogachev; Sagit Meir; Leonid Brodsky; J. William Allwood; Alexander Erban; Warwick B. Dunn; Lorraine Kay; Sjaak de Koning; Ric C. H. de Vos; Harry Jonker; Roland Mumm; Catherine Deborde; Michael Maucourt; Stéphane Bernillon; Yves Gibon; Thomas H. Hansen; Søren Husted; Royston Goodacre; Joachim Kopka; Jan K. Schjoerring; Dominique Rolin; Robert D. Hall

• Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. • The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. • This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. • The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.


New Phytologist | 2013

The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning

Jian Xin Shi; Avital Adato; Noam Alkan; Yonghua He; Justin Lashbrooke; Antonio J. Matas; Sagit Meir; Sergey Malitsky; Tal Isaacson; Dov Prusky; Dena Leshkowitz; Lukas Schreiber; Antonio Granell; Emilie Widemann; Bernard Grausem; Franck Pinot; Jocelyn K. C. Rose; Ilana Rogachev; Asaph Aharoni

Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.


Journal of Agricultural and Food Chemistry | 2011

Qualitative Characterization of Benzoxazinoid Derivatives in Whole Grain Rye and Wheat by LC-MS Metabolite Profiling

Kati Hanhineva; Ilana Rogachev; Anna-Marja Aura; Asaph Aharoni; Kaisa Poutanen; Hannu Mykkänen

Benzoxazinoids are metabolites occurring in a restricted group of plant species including crops such as rye, wheat, and maize. Focus on the analysis of benzoxazinoid metabolites has typically been due to their importance to plant biochemistry and physiology as highly bioactive molecules that plants use as alleochemicals to defend themselves against predators and infections. However, the potential dietary contribution of these compounds has not been addressed. This study conducted a detailed qualitative characterization of benzoxazinoid metabolites present in the whole grain rye and processed fractions of rye bran, and their presence was also detected in whole grain wheat samples. Several novel benzoxazinoid metabolites of the hydroxamic acids (2,4-dihydroxy-1,4-benzoxazin-3-one, DIBOA; 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, DIMBOA), lactams (2-hydroxy-1,4-benzoxazin-3-one, HBOA), and benzoxazolinones (1,3-benzoxazol-2-one, BOA) were identified, including double-hexose derivatives of DIBOA, DIMBOA, and HBOA. This paper presents an important addition to the information on the phytochemical composition of rye and wheat grains, which deserves attention in the discussion of the potential health-promoting effects of these grains.

Collaboration


Dive into the Ilana Rogachev's collaboration.

Top Co-Authors

Avatar

Asaph Aharoni

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sagit Meir

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sergey Malitsky

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Kati Hanhineva

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Abraham Warshawsky

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Maxim Itkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Nir Shahaf

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Avital Adato

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ilya Venger

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Uwe Heinig

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge