Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Marech is active.

Publication


Featured researches published by Ilaria Marech.


Current Drug Targets | 2011

Dasatinib: an anti-tumour agent via Src inhibition.

Antonio Gnoni; Ilaria Marech; Nicola Silvestris; Angelo Vacca; Vito Lorusso

Dasatinib (BMS-354825, Sprycel®) is an oral, multitargeted inhibitor of receptor tyrosine kinases (RTKs), including BCR-ABL fusion protein, stem cell factor receptor (c-KIT), platelet-derived growth factor receptor (PDGFR), and Src family kinases (SFKs). Several early- and late-phase clinical trials for chronic myelogeneous leukaemia (CML) have demonstrated the direct inhibition of BCR-ABL fusion protein and SFKs, which led to dasatinib approval by the Food and Drug Administration (FDA) and the European Union for the treatment of imatinib-resistant or -intolerant CML, and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Phase III dose-optimization study was performed to compare different regimens, stating that dasatinib 100 mg once daily is now the recommended schedule for patients with chronic CML, and 140 mg once daily for patients with accelerated phase or myeloid or lymphoid blast phase CML, and for patients with Ph+ ALL until progression. Because of the myriad of critical roles of SFKs in biological processes, SFKs inhibition could induce numerous biological responses. Ongoing clinical trials evaluate dasatinib in the treatment of several solid tumours, including gastrointestinal stromal tumours (GIST), prostate cancer, malignant pleural mesothelioma, sarcomas, NSCLC, colorectal cancer, glioblastoma and other haematologic malignancies as multiple myeloma. Ongoing pre-clinical studies assess the therapeutic potential of dasatinib in other solid tumours, including melanoma, head and neck cancer, breast cancer and ovarian cancer. Dasatinib is generally well tolerated. Myelosuppression is the common adverse event which is, however, reversible by dose reduction, discontinuation, or interruption. Thrombocytopenia is more significant than neutropenia and associated to gastrointestinal bleeding and CNS haemorrhage. The most common non-haematologic adverse events include gastrointestinal symptoms (diarrhoea, nausea, vomiting, abdominal pain and anorexia), headache, peripheral edema, and pleural effusion. In respect of these encouraging studies investigating dasatinib in the treatment of patients with GIST, prostate cancer, multiple myeloma and sarcomas, ongoing phase III clinical trials warrant the drug evaluation as recommended agent for the treatment of these diseases, also in association with chemotherapy or other targeted therapies.


Critical Reviews in Oncology Hematology | 2014

Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: A new treatment for metastatic soft tissue sarcoma

Girolamo Ranieri; Maria Mammì; Eugenio Donato Di Paola; Emilio Russo; Luca Gallelli; Rita Citraro; Cosmo Damiano Gadaleta; Ilaria Marech; Michele Ammendola; Giovambattista De Sarro

Soft tissue sarcomas (STS) are rare tumors with mesenchymal origin, accounting for 1% of all human cancer. Local control of STS can be obtained through the use of surgery and radiotherapy. In about 40% of these patients, disease will recur at distant sites, and of these more than 90% will die because of this aggressive malignancy. In advanced and/or metastatic STS patients treated with anthracycline-based regimen the median overall survival is about 12 months, and it has remained unchanged during the last 20 years. Clearly, this strongly suggests the need for discover more active compounds in STS, such as imatinib in GIST or dermatofibrosarcoma patients. In this paper we describe the crucial role of angiogenesis mechanisms in sarcomas development and progression. Consequentially, we focus on pazopanib, a novel multitargeted tyrosine kinase inhibitor with anti-angiogenic activity, mainly due to VEGFR2 pathway interference. We also analyze principal completed trials leading pazopanib approval in sarcomas pretreated patients.


Critical Reviews in Oncology Hematology | 2014

Masitinib (AB1010), from canine tumor model to human clinical development: Where we are?

Ilaria Marech; Rosa Patruno; Nicola Zizzo; Claudia Gadaleta; Marcello Introna; Alfredo Francesco Zito; Cosmo Damiano Gadaleta; Girolamo Ranieri

Masitinib mesylate (AB1010) is a novel potent and selective tyrosine kinase inhibitor, targeting mainly wild-type and mutated c-Kit receptor (c-KitR), Platelet Derived Growth Factor Receptor-alfa/beta (PDGFRa/ß), Lymphocyte-specific kinase (Lck), Lck/Yes-related protein (LYn), Fibroblast Growth Factor Receptor 3 (FGFR3) and Focal Adhesion Kinase (FAK). It is the first anticancer therapy approved in veterinary medicine for the treatment of unresectable canine mast cell tumors (CMCTs), harboring activating c-KitR mutations, at dose of 12.5mg/kg once daily. Considering its anti-proliferative action, principally given by inhibiting the MCs c-KitR anti-angiogenic pathway that leads cancer progression, and its role as chemosensitizer, masitinib is under clinical investigation in several human malignancies (Gastro-Intestinal Stromal Tumors, acute myeloid leukemia, systemic mastocytosis, pancreatic cancer, multiple myeloma, non-small cell lung cancer, melanoma, ovarian and prostate cancer), which are characterized by similar canine c-KIT proto-oncogene mutations. Here, we analyze masitinib structure activity, its pharmacokinetics compared to imatinib, the c-KitR pathway referring to the most frequent c-KIT mutations sensitive or resistant to this novel drug compared to imatinib, and masitinib safety profile. We, also, explore preclinical and clinical (completed and ongoing) trials with the aim to emphasize as this recent anti-angiogenic therapy, at first approved in CMCTs and, currently in development for the treatment of several human neoplasms, could be represent a milestone in translational oncology, in which the murine experimental model of cancer research could be integrated by canine spontaneous tumor model.


PLOS ONE | 2014

Correlation between Serum Tryptase, Mast Cells Positive to Tryptase and Microvascular Density in Colo-Rectal Cancer Patients: Possible Biological-Clinical Significance

Michele Ammendola; Rosario Sacco; Giuseppe Sammarco; Giuseppe Donato; Severino Montemurro; Eustachio Ruggieri; Rosa Patruno; Ilaria Marech; Marica Cariello; Angelo Vacca; Cosmo Damiano Gadaleta; Girolamo Ranieri

Background Tryptase is a serin protease stored and released from mast cells (MCs) that plays a role in tumour angiogenesis. In this study we aimed to evaluate serum tryptase levels in colo-rectal cancer (CRC) patients before (STLBS) and after (STLAS) radical surgical resection. We also evaluated mast cell density positive to tryptase (MCDPT) and microvascular density (MVD) in primary tumour tissue. Methods A series of 61 patients with stage B and C CRC (according to the Astler and Coller staging system) were selected. Serum blood samples were collected from patients one day before and one day after surgery. Tryptase levels were measured using the UniCAP Tryptase Fluoroenzymeimmunoassay (Pharmacia, Uppsala, Sweden). Tumour sections were immunostained with a primary anti-tryptase antibody (clone AA1; Dako, Glostrup, Denmark) and an anti CD-34 antibody (QB-END 10; Bio-Optica Milan, Italy) by means of immunohistochemistry and then evaluated by image analysis methods. Results The mean ± s.d. STLBS and STLAS was 5.63±2.61 µg/L, and 3.39±1.47 µg/L respectively and a significant difference between mean levels was found: p = 0.000 by t-test. The mean ± s.d. of MCDPT and MVD was 8.13±3.28 and 29.16±7.39 respectively. A strong correlation between STLBS and MVD (r = 0.83, p = 0.000); STLBS and MCDPT (r = 0.60, p = 0.003); and MCDPT and MVD (r = 0.73; p = 0.001) was found. Conclusion Results demonstrated higher STLBS in CRC patients, indicating an involvement of MC tryptase in CRC angiogenesis. Data also indicated lower STLAS, suggesting the release of tryptase from tumour-infiltrating MCs. Serum tryptase levels may therefore play a role as a novel bio-marker predictive of response to radical surgery. In this context tryptase inhibitors such as Gabexate and Nafamostat Mesilate might be evaluated in adjuvant clinical trials as a new anti-angiogenic approach.


BioMed Research International | 2014

Targeting Mast Cells Tryptase in Tumor Microenvironment: A Potential Antiangiogenetic Strategy

Michele Ammendola; Christian Leporini; Ilaria Marech; Cosmo Damiano Gadaleta; Giovanni Scognamillo; Rosario Sacco; Giuseppe Sammarco; Giovambattista De Sarro; Emilio Russo; Girolamo Ranieri

Angiogenesis is a complex process finely regulated by the balance between angiogenesis stimulators and inhibitors. As a result of proangiogenic factors overexpression, it plays a crucial role in cancer development. Although initially mast cells (MCs) role has been defined in hypersensitivity reactions and in immunity, it has been discovered that MCs have a crucial interplay on the regulatory function between inflammatory and tumor cells through the release of classical proangiogenic factors (e.g., vascular endothelial growth factor) and nonclassical proangiogenic mediators granule-associated (mainly tryptase). In fact, in several animal and human malignancies, MCs density is highly correlated with tumor angiogenesis. In particular, tryptase, an agonist of the proteinase-activated receptor-2 (PAR-2), represents one of the most powerful angiogenic mediators released by human MCs after c-Kit receptor activation. This protease, acting on PAR-2 by its proteolytic activity, has angiogenic activity stimulating both human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis. Based on literature data it is shown that tryptase may represent a promising target in cancer treatment due to its proangiogenic activity. Here we focused on molecular mechanisms of three tryptase inhibitors (gabexate mesylate, nafamostat mesylate, and tranilast) in order to consider their prospective role in cancer therapy.


World Journal of Gastroenterology | 2014

Possible biological and translational significance of mast cells density in colorectal cancer

Ilaria Marech; Michele Ammendola; Claudia Gadaleta; Nicola Zizzo; Caroline Oakley; Cosmo Damiano Gadaleta; Girolamo Ranieri

Mast cells (MCs), located ubiquitously near blood vessels, are descended from CD34(+) hematopoietic stem cells. Initially, although their role has been well defined in hypersensitivity reactions, the discovery of their sharing in both innate and adaptive immunity has allowed to redefine their crucial interplay on the regulatory function between inflammatory and tumor cells through the release of mediators granule-associated (mainly tryptase and vascular endothelial growth factor). In particular, in several animal and human malignancies it has been well demonstrated that activated c-Kit receptor (c-KitR) and tryptase (an agonist of the proteinase-activated receptor-2) take pivotal part in tumor angiogenesis after the MCs activation, contributing to tumor cells invasion and metastasis. In this review, we focused on crucial MCs density (MCD) role in colorectal cancer (CRC) development and progression angiogenesis-mediated; then, we will analyze the principal studies that have focused on MCD as possible prognostic factor. Finally, we will consider a possible role of MCD as novel therapeutic target mainly by c-KitR tyrosine kinase inhibitors (imatinib, masitinib) and tryptase inhibitors (gabexate and nafamostat mesylate) with the aim to prevent CRC progression.


Gastroenterology Research and Practice | 2014

Mast cells density positive to tryptase correlates with angiogenesis in pancreatic ductal adenocarcinoma patients having undergone surgery

Michele Ammendola; Rosario Sacco; Giuseppe Sammarco; Giuseppe Donato; Valeria Zuccalà; Maria Luposella; Rosa Patruno; Ilaria Marech; Severino Montemurro; Nicola Zizzo; Cosmo Damiano Gadaleta; Girolamo Ranieri

Background. Literature data suggest that cells such as mast cells (MCs), are involved in angiogenesis. MCs can stimulate angiogenesis by releasing of several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor. Nevertheless few data are available concerning the role of MCs positive to tryptase in primary pancreatic cancer angiogenesis. This study analyzed MCs and angiogenesis in primary tumour tissue from patients affected by pancreatic ductal adenocarcinoma (PDAC). Method. A series of 31 PDAC patients with stage T2-3N0-1M0 (by AJCC for Pancreas Cancer Staging 7th Edition) was selected and then underwent surgery. Tumour tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCs positive to tryptase (MCDPT), area occupied by MCs positive to tryptase (MCAPT), microvascular density (MVD), and endothelial area (EA). The above parameters were related to each other and to the main clinicopathological features. Results. A significant correlation between MCDPT, MCAPT, MVD, and EA group was found by Pearsons t-test analysis (r ranged from 0.69 to 0.81; P value ranged from 0.001 to 0.003). No other significant correlation was found. Conclusion. Our pilot data suggest that MCs positive to tryptase may play a role in PDAC angiogenesis and they could be further evaluated as a novel tumour biomarker and as a target of antiangiogenic therapy.


BioMed Research International | 2014

C-Kit Expression, Angiogenesis, and Grading in Canine Mast Cell Tumour: A Unique Model to Study C-Kit Driven Human Malignancies

Rosa Patruno; Ilaria Marech; Nicola Zizzo; Michele Ammendola; Patrizia Nardulli; Claudia Gadaleta; Marcello Introna; Gennaro Stefano Capriuolo; Rosa Angela Rubini; Domenico Ribatti; Cosmo Damiano Gadaleta; Girolamo Ranieri

Canine cutaneous mast cell tumour (CMCT) is a c-Kit driven tumour sharing similar c-Kit aberrations found in human gastrointestinal stromal tumour. CMCT is classified into three forms: well- (G1), intermediately (G2) (more benign diseases), and poorly (G3) differentiated (malignant) forms. We assess a correlation between c-Kit status, grading, and angiogenesis in CMCTs to explore their potential significance in humans. C-Kit receptor (c-KitR) expression, microvascular density (MVD), and mast cell granulated and degranulated status density (MCGD and MCDD, resp.) were analyzed in 97 CMCTs, by means of histochemistry, immunohistochemistry double staining, and image analysis system. Data showed that predominantly diffuse cytoplasmic- and predominantly focal paranuclear- (Golgi-like) c-Kit protein (PDC-c-Kit and PFP-c-Kit, resp.) expression correlate with high MVD, G3 histopathological grade, and MCDD. Moreover, predominant cell membrane-c-KitR (PCM-c-KitR) expression status correlates with low MVD, G1-G2 histopathological grade, and MCGD. These findings underline the key role of c-Kit in the biopathology of canine MCTs, indicating a link between aberrant c-Kit expression, increased angiogenesis, and higher histopathological grade. CMCT seems to be a model to study contributions of c-Kit activated MCs in tumour angiogenesis and to evaluate the inhibition of MCs activation by means of c-Kit tyrosine kinase inhibitors, currently translated in humans.


Critical Reviews in Oncology Hematology | 2013

Tyrosine kinase inhibitors (TKIs) in human and pet tumours with special reference to breast cancer: A comparative review

Girolamo Ranieri; Marianna Pantaleo; M. Piccinno; Maria Roncetti; Maddalena Mutinati; Ilaria Marech; Rosa Patruno; A. Rizzo; Raffaele Luigi Sciorsci

Tyrosine kinase receptors (TKRs) play a key role in tumour cell proliferation and survival since they are involved in endothelial cell activation leading to tumour neoangiogenesis. In particular, vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (c-KitR), and colony-stimulating factor 1 (CSF-1) are overexpressed or constitutively activated in human and pet malignancies. A variety of small molecule inhibitors targeting specific tyrosine kinases (known as tyrosine kinase inhibitors or TKIs) have recently been approved, or are under investigation, for the treatment of human cancer. TKI application in animal cancer is however relatively recent. This review aims to illustrate the major aspects of tyrosine kinase dysfunctions, with special regard to human and animal cancer of the mammary gland, providing an update on the background of the anti-angiogenic and anti-neoplastic properties of TKIs in human and veterinary cancer.


International Journal of Oncology | 2012

Novel strategies in the treatment of castration-resistant prostate cancer (Review).

Ilaria Marech; Angelo Vacca; Girolamo Ranieri; Antonio Gnoni; Franco Dammacco

Prostate cancer is the most common cancer in men in Europe and the United States, and the third leading cause of death from cancer in Europe. Survival of prostate cancer cells is dependent on the activation of androgen receptors (AR), that are overexpressed in this tumor. Furthermore, ~90% of prostate cancer patients that respond to first-line androgen deprivation therapy (ADT) undergo rapid progression. This condition is defined as castration-resistant prostate cancer (CRPC). Docetaxel-based regimens significantly improve overall survival (OS) in patients with CRPC and represent the only treatment strategy approved by the Food and Drug Administration (FDA). Recently, abiraterone (second hormonal therapy) and cabazitaxel (new taxane) have been shown to improve survival in patients with CRPC who progressed following docetaxel-based chemotherapy. Vaccine therapy has also been demonstrated to improve OS in patients with asymptomatic or minimally symptomatic metastatic CRPC. Additional therapeutic targets have been analyzed in prostate cancer, including apoptosis, angiogenic receptors, vitamin D and Src pathways. Several phase II studies are ongoing. The high frequency of prostate cancer-related metastatic bone disease has led to consider this pathway as a therapeutic target. To this end, several bone-targeted agents have been investigated, most notably zoledronic acid, which is highly effective at stabilizing the bone and preventing skeletal complications. More recently, a nuclear factor-β ligand (RANKL) inhibitor, denosumab, has been developed for the treatment of bone metastases.

Collaboration


Dive into the Ilaria Marech's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge