Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Palumbo is active.

Publication


Featured researches published by Ilaria Palumbo.


Gut | 2014

Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation

Giuseppe Esposito; Elena Capoccia; Fabio Turco; Ilaria Palumbo; Jie Lu; Antonio Steardo; Rosario Cuomo; Giovanni Sarnelli; Luca Steardo

Objective Enteric glia activation has been reported to amplify intestinal inflammation via the enteroglial-specific S100B protein. This neurotrophin promotes macrophage recruitment in the mucosa, amplify colonic inflammation and interacts with toll-like receptors (TLR). Molecules inhibiting S100B-driven enteric activation might mitigate the course of ulcerative colitis (UC). This study aims to investigate the effects of palmitoylethanolammide (PEA), a drug able to counteract astroglial activation in the central nervous system, on intestinal inflammation, in humans and mice. Design Mouse models of dextran sodium sulphate (DSS)-induced colitis, colonic biopsies deriving from UC patients and primary cultures of mouse and human enteric glial cells (EGC), have been used to assess the effects of PEA, alone or in the presence of specific PPARα or PPARγ antagonists, on: macroscopic signs of UC (DAI score, colon length, spleen weight, macrophages/neutrophils infiltration); the expression and release of proinflammatory markers typical of UC; TLR pathway in EGCs. Results PEA treatment improves all macroscopic signs of UC and decreases the expression and release of all the proinflammatory markers tested. PEA anti-inflammatory effects are mediated by the selective targeting of the S100B/TLR4 axis on ECG, causing a downstream inhibition of nuclear factor kappa B (NF-kB)-dependent inflammation. Antagonists at PPARα, but not PPARγ, abolished PEA effects, in mice and in humans. Conclusions Because of its lack of toxicity, its ability in reducing inflammation and its selective PPARα action, PEA might be an innovative molecule to broaden pharmacological strategies against UC.


Gut | 2014

Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells

Fabio Turco; Giovanni Sarnelli; Carla Cirillo; Ilaria Palumbo; Francesco De Giorgi; Alessandra D'Alessandro; Marcella Cammarota; Mariateresa Giuliano; Rosario Cuomo

Objective Enteric glial cells (EGC) have been suggested to participate in host–bacteria cross-talk, playing a protective role within the gut. The way EGC interact with microorganisms is still poorly understood. We aimed to evaluate whether: EGC participate in host–bacteria interaction; S100B and Toll-like receptor (TLR) signalling converge in a common pathway leading to nitric oxide (NO) production. Design Primary cultures of human EGC were exposed to pathogenic (enteroinvasive Escherichia coli; EIEC) and probiotic (Lactobacillus paracasei F19) bacteria. Cell activation was assessed by evaluating the expression of cFos and major histocompatibility complex (MHC) class II molecules. TLR expression in EGC was evaluated at both baseline and after exposure to bacteria by real-time PCR, fluorescence microscopy and western blot analysis. S100B expression and NO release from EGC, following exposure to bacteria, were measured in the presence or absence of specific TLR and S100B pathway inhibitors. Results EIEC activated EGC by inducing the expression of cFos and MHC II. EGC expressed TLR at baseline. Pathogens and probiotics differentially modulated TLR expression in EGC. Pathogens, but not probiotics, significantly induced S100B protein overexpression and NO release from EGC. Pretreatment with specific inhibitors of TLR and S100B pathways abolished bacterial-induced NO release from EGC. Conclusions Human EGC interact with bacteria and discriminate between pathogens and probiotics via a different TLR expression and NO production. In EGC, NO release is impaired in the presence of specific inhibitors of the TLR and S100B pathways, suggesting the presence of a novel common pathway involving both TLR stimulation and S100B protein upregulation.


Journal of Neurogastroenterology and Motility | 2015

The Bitter Taste Receptor Agonist Quinine Reduces Calorie Intake and Increases the Postprandial Release of Cholecystokinin in Healthy Subjects.

Paolo Andreozzi; Giovanni Sarnelli; Marcella Pesce; Francesco Paolo Zito; Alessandra D’Alessandro; Viviana Verlezza; Ilaria Palumbo; Fabio Turco; Katherine Esposito; Rosario Cuomo

Background/Aims Bitter taste receptors are expressed throughout the digestive tract. Data on animals have suggested these receptors are involved in the gut hormone release, but no data are available in humans. Our aim is to assess whether bitter agonists influence food intake and gut hormone release in healthy subjects. Methods Twenty healthy volunteers were enrolled in a double-blind cross-over study. On 2 different days, each subject randomly received an acid-resistant capsule containing either placebo or 18 mg of hydrochloride (HCl) quinine. After 60 minutes, all subjects were allowed to eat an ad libitum meal until satiated. Plasma samples were obtained during the experiment in order to evaluate cholecystokinin (CCK) and ghrelin levels. Each subject was screened to determine phenylthiocarbamide (PTC) tasting status. Results Calorie intake was significantly lower when subjects received HCl quinine than placebo (514 ± 248 vs 596 ± 286 kcal; P = 0.007). Significantly higher CCK ΔT90 vs T0 and ΔT90 vs T60 were found when subjects received HCl quinine than placebo (0.70 ± 0.69 vs 0.10 ± 0.86 ng/mL, P = 0.026; 0.92 ± 0.75 vs 0.50 ± 0.55 ng/mL, P = 0.033, respectively). PTC tasters ingested a significantly lower amount of calories when they received HCl quinine compared to placebo (526 ± 275 vs 659 ± 320 kcal; P = 0.005), whereas no significant differences were found for PTC non-tasters (499 ± 227 vs 519 ± 231 kcal; P = 0.525). Conclusions This study showed that intra-duodenal release of a bitter compound is able to significantly affect calorie intake and CCK release after a standardized meal. Our results suggest that bitter taste receptor signaling may have a crucial role in the control of food intake.


Blood | 2013

WT1 regulates murine hematopoiesis via maintenance of VEGF isoform ratio

Thomas J. Cunningham; Ilaria Palumbo; Michela Grosso; Nicholas J. Slater; Colin Miles

Mutations in the Wilms tumor suppressor 1 (WT1) gene are as frequent in acute myeloid leukemia (AML) as in nephroblastma and predict poor prognosis. However, the role of WT1 in hematopoiesis remains unclear. We show that Wt1-deficient mouse embryonic stem cells exhibit reduced hematopoietic potential caused by vascular endothelial growth factor A (Vegf-a)-dependent apoptosis of hematopoietic progenitor cells associated with overproduction of the Vegf-a120 isoform. We demonstrate that Wt1 promotes exon inclusion using a Vegf-a minigene-based splicing assay. These data identify a critical role for Wt1 in hematopoiesis and Vegf-a as a cellular RNA whose splicing is potentially regulated by Wt1. The correction of Wt1 deficiency by treatment with exogenous Vegf-a protein indicates that the Wt1/Vegf-a axis is a molecular pathway that could be exploited for the management/treatment of poor prognosis AMLs.


Brain Behavior and Immunity | 2018

Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice

Francesca Guida; F. Turco; Monica Iannotta; D. De Gregorio; Ilaria Palumbo; G. Sarnelli; Anna Furiano; F. Napolitano; Serena Boccella; Livio Luongo; Mariacristina Mazzitelli; Alessandro Usiello; F. De Filippis; Fabio Arturo Iannotti; Francesco Piscitelli; Danilo Ercolini; V. de Novellis; V. Di Marzo; Rosario Cuomo; Sabatino Maione

The microbiota-gut-brain axis (MGBA) regulates the reciprocal interaction between chronic inflammatory bowel and psychiatric disorders. This interaction involves multiple pathways that are highly debated. We examined the behavioural, biochemical and electrophysiological alterations, as well as gut microbiota composition in a model of antibiotic-induced experimental dysbiosis. Inflammation of the small intestine was also assessed. Mice were exposed to a mixture of antimicrobials for 2weeks. Afterwards, they received Lactobacillus casei DG (LCDG) or a vehicle for up to 7days via oral gavage. Perturbation of microbiota was accompanied by a general inflammatory state and alteration of some endocannabinoidome members in the gut. Behavioural changes, including increased immobility in the tail suspension test and reduced social recognition were observed, and were associated with altered BDNF/TrkB signalling, TRPV1 phosphorylation and neuronal firing in the hippocampus. Moreover, morphological rearrangements of non-neuronal cells in brain areas controlling emotional behaviour were detected. Subsequent probiotic administration, compared with vehicle, counteracted most of these gut inflammatory, behavioural, biochemical and functional alterations. Interestingly, levels of Lachnospiraceae were found to significantly correlate with the behavioural changes observed in dysbiotic mice. Our findings clarify some of the biomolecular and functional modifications leading to the development of affective disorders associated with gut microbiota alterations.


World Journal of Gastrointestinal Pathophysiology | 2013

Genetic contribution to motility disorders of the upper gastrointestinal tract.

Giovanni Sarnelli; Alessandra D'Alessandro; Marcella Pesce; Ilaria Palumbo; Rosario Cuomo

Motility disorders of the upper gastrointestinal tract encompass a wide range of different diseases. Esophageal achalasia and functional dyspepsia are representative disorders of impaired motility of the esophagus and stomach, respectively. In spite of their variable prevalence, what both diseases have in common is poor knowledge of their etiology and pathophysiology. There is some evidence showing that there is a genetic predisposition towards these diseases, especially for achalasia. Many authors have investigated the possible genes involved, stressing the autoimmune or the neurological hypothesis, but there is very little data available. Similarly, studies supporting a post-infective etiology, based on an altered immune response in susceptible individuals, need to be validated. Further association studies can help to explain this complex picture and find new therapeutic targets. The aim of this review is to summarize current knowledge of genetics in motility disorders of the upper gastrointestinal tract, addressing how genetics contributes to the development of achalasia and functional dyspepsia respectively.


United European gastroenterology journal | 2017

Allele-specific transcriptional activity of the variable number of tandem repeats of the inducible nitric oxide synthase gene is associated with idiopathic achalasia

Giovanni Sarnelli; Michela Grosso; Ilaria Palumbo; Marcella Pesce; Alessandra D’Alessandro; Giovanni Zaninotto; Vito Annese; Raffaella Petruzzelli; Paola Izzo; Rossana Sepulveres; Dario Bruzzese; Giuseppe Esposito; Rosario Cuomo

Background Polymorphisms of genes involved in the regulation of the immune response are risk factors for achalasia, but their contribution to disease pathogenesis is unknown. Nitric oxide is involved both in immune function and inhibitory neurotransmission. Objective The objective of this article is to assess the association and the functional relevance of the CCTTT-inducible nitric oxide synthase (NOS2) gene promoter polymorphism in achalasia. Methods Genomic DNA was isolated from 181 achalasia patients and 220 controls. Genotyping of the (CCTTT)n repeats was performed by PCR and capillary electrophoresis, and data analyzed by considering the frequency of the different alleles. HT29 cells were transfected with iNOS luciferase promoter-reporter plasmids containing different (CCTTT)n. Results The alleles’ distribution ranged from 7 to 18, with a peak frequency at 12 repeats. Analysis of the allele frequencies revealed that individuals carrying 10 and 13 CCTTT repeats were respectively less and more frequent in achalasia (OR 0.5, 95% CI 0.3–0.5 and OR 1.6, 95% CI 1–2.4, all p < 0.05). Long repeats were also significantly associated with an earlier onset of the disease (OR 1.69, 95% CI 1.13–2.53, p = 0.01). Transfection experiments revealed a similar allele-specific iNOS transcriptional activity. Conclusion The functional polymorphism (CCTTT) of NOS2 promoter is associated with achalasia, likely by an allele-specific modulation of nitric oxide production.


Haematologica | 2008

Defective mRNA levels are responsible for a β-thalassemia phenotype associated with Hb Federico II, a novel hemoglobin variant [β-106 (G8) Leu→Val]

Michela Grosso; Ilaria Palumbo; Emanuela Morelli; Stella Puzone; Raffaele Sessa; Paola Izzo

Hemoglobinopathies are widespread monogenic disorders that encompass complex and partially overlapping hemoglobin disorders and thalassemia syndromes. About 960 hemoglobin variants have been identified, some of which are reported to be unstable.[1][1] Various mechanisms for the decreased stability


United European gastroenterology journal | 2017

Bacterial stimuli activate nitric oxide colonic mucosal production in diverticular disease. Protective effects of L. casei DG® (Lactobacillus paracasei CNCM I-1572)

Fabio Turco; Paolo Andreozzi; Ilaria Palumbo; Francesco Paolo Zito; Martina Cargiolli; Walter Fiore; Nicola Gennarelli; Giovanni Domenico De Palma; Giovanni Sarnelli; Rosario Cuomo

Background Micro-inflammation and changes in gut microbiota may play a role in the pathogenesis of diverticular disease (DD). Objective The objective of this article is to evaluate the expression of nitric oxide (NO)-related mediators and S100B in colonic mucosa of patients with DD in an ex vivo model of bacterial infection. Methods Intestinal biopsies obtained from patients with diverticulosis, symptomatic uncomplicated diverticular disease (SUDD) and SUDD with previous acute diverticulitis (SUDD+AD) were stimulated with the probiotic L. casei DG® (LCDG) and/or the pathogen enteroinvasive Escherichia coli (EIEC). S100B, NO release and iNOS expression were then evaluated. Results Basal iNOS expression was significantly increased in SUDD and SUDD+AD patients. Basal NO expression was significantly increased in SUDD+AD. No differences in S100B release were found. In all groups, iNOS expression was significantly increased by EIEC and reduced by LCDG. In all groups, except for SUDD+AD, EIEC significantly increased NO release, whereas no increase was observed when LCDG was added to biopsies. EIEC did not induce significant changes in S100B release. Conclusions Colonic mucosa of patients with DD is characterized by a different reactivity toward pathogenic stimuli. LCDG plays a role in counteracting the pro-inflammatory effects exerted by EIEC, suggesting a beneficial role of this probiotic in DD.


Phytotherapy Research | 2016

Acetonic Extract from the Feijoa sellowiana Berg. Fruit Exerts Antioxidant Properties and Modulates Disaccharidases Activities in Human Intestinal Epithelial Cells

Fabio Turco; Ilaria Palumbo; Paolo Andreozzi; Giovanni Sarnelli; Francesca De Ruberto; Giuseppe Esposito; Adriana Basile; Rosario Cuomo

Feijoa sellowiana fruit has been shown to possess various biological activities, such as anti‐bacterial and anti‐cancer properties, in a variety of cellular models, but its activity on human intestinal epithelial cells has never been tested. The purpose of this study was to investigate the effects of the acetonic extract of F. sellowiana fruits on the viability, membrane peroxidation, disaccharidases activities and proliferation of in vitro models of human intestinal epithelial cells. To obtain this goal, Caco‐2 and HT‐29 cells were exposed to the acetonic extract for 24 h. Cell proliferation, viability, lactase and sucrase‐isomaltase activity and H2O2‐induced membrane lipid peroxidation were tested. We found that, compared to control conditions, the acetonic extract significantly increased lactase and sucrase‐isomaltase activity in Caco‐2, but not HT‐29, cells, decreased proliferation, had no effects on viability and restored lipid peroxidation in both cell models. This study suggests that the acetonic extract improves lactase and sucrase‐isomaltase activity, inhibits cell proliferation, have no cytotoxic effects and prevent lipid peroxidation of intestinal epithelial cells. These effects may be exploited in case of disaccharidases deficit and also as an adjuvant treatment of diseases related to oxidative stress. Copyright

Collaboration


Dive into the Ilaria Palumbo's collaboration.

Top Co-Authors

Avatar

Rosario Cuomo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giovanni Sarnelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Fabio Turco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alessandra D'Alessandro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marcella Pesce

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Michela Grosso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paola Izzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo Andreozzi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Paolo Zito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Esposito

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge