Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Piano is active.

Publication


Featured researches published by Ilaria Piano.


Frontiers in Systems Neuroscience | 2014

Expression of calcium-binding proteins and selected neuropeptides in the human, chimpanzee, and crab-eating macaque claustrum

Andrea Pirone; Maura Castagna; Alberto Granato; Antonella Peruffo; Francesca Quilici; Laura Cavicchioli; Ilaria Piano; Carla Lenzi; Bruno Cozzi

The claustrum is present in all mammalian species examined so far and its morphology, chemoarchitecture, physiology, phylogenesis and ontogenesis are still a matter of debate. Several morphologically distinct types of immunostained cells were described in different mammalian species. To date, a comparative study on the neurochemical organization of the human and non-human primates claustrum has not been fully described yet, partially due to technical reasons linked to the postmortem sampling interval. The present study analyze the localization and morphology of neurons expressing parvalbumin (PV), calretinin (CR), NPY, and somatostatin (SOM) in the claustrum of man (# 5), chimpanzee (# 1) and crab-eating monkey (# 3). Immunoreactivity for the used markers was observed in neuronal cell bodies and processes distributed throughout the anterior-posterior extent of human, chimpanzee and macaque claustrum. Both CR- and PV-immunoreactive (ir) neurons were mostly localized in the central and ventral region of the claustrum of the three species while SOM- and NPY-ir neurons seemed to be equally distributed throughout the ventral-dorsal extent. In the chimpanzee claustrum SOM-ir elements were not observed. No co-localization of PV with CR was found, thus suggesting the existence of two non-overlapping populations of PV and CR-ir interneurons. The expression of most proteins (CR, PV, NPY), was similar in all species. The only exception was the absence of SOM-ir elements in the claustrum of the chimpanzee, likely due to species specific variability. Our data suggest a possible common structural organization shared with the adjacent insular region, a further element that emphasizes a possible common ontogeny of the claustrum and the neocortex.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa

Enrica Strettoi; Claudia Gargini; Elena Novelli; Giusy Sala; Ilaria Piano; Paolo Gasco; Riccardo Ghidoni

Retinitis pigmentosa (RP) is a genetic disease causing progressive apoptotic death of photoreceptors and, ultimately, incurable blindness. Using the retinal degeneration 10 (rd10) mouse model of RP, we investigated the role of ceramide, a proapoptotic sphingolipid, in retinal degeneration. We also tested the possibility that photoreceptor loss can be slowed or blocked by interfering with the ceramide signaling pathway of apoptosis in vivo. Retinal ceramide levels increased in rd10 mice during the period of maximum photoreceptor death. Single intraocular injections of myriocin, a powerful inhibitor of serine palmitoyl-CoA transferase, the rate-limiting enzyme of ceramide biosynthesis, lowered retinal ceramide levels to normal values and rescued photoreceptors from apoptotic death. Noninvasive treatment was achieved using eye drops consisting of a suspension of solid lipid nanoparticles loaded with myriocin. Short-term noninvasive treatment lowered retinal ceramide in a manner similar to intraocular injections, indicating that nanoparticles functioned as a vector permitting transcorneal drug administration. Prolonged treatment (10–20 d) with solid lipid nanoparticles increased photoreceptor survival, preserved photoreceptor morphology, and extended the ability of the retina to respond to light as assessed by electroretinography. In conclusion, pharmacological targeting of ceramide biosynthesis slowed the progression of RP in a mouse model, and therefore may represent a therapeutic approach to treating this disease in humans. Transcorneal administration of drugs carried in solid lipid nanoparticles, as experimented in this study, may facilitate continuous, noninvasive treatment of patients with RP and other retinal pathologies.


Progress in Retinal and Eye Research | 2015

Pharmacological approaches to retinitis pigmentosa: A laboratory perspective.

Guadagni; Elena Novelli; Ilaria Piano; Claudia Gargini; Enrica Strettoi

Retinal photoreceptors are highly specialized and performing neurons. Their cellular architecture is exquisitely designed to host a high concentration of molecules involved in light capture, phototransduction, electric and chemical signaling, membrane and molecular turnover, light and dark adaption, network activities etc. Such high efficiency and molecular complexity require a great metabolic demand, altogether conferring to photoreceptors particular susceptibility to external and internal insults, whose occurrence usually precipitate into degeneration of these cells and blindness. In Retinitis Pigmentosa, an impressive number of mutations in genes expressed in the retina and coding for a large varieties of proteins leads to the progressive death of photoreceptors and blindness. Recent advances in molecular tools have greatly facilitated the identification of the underlying genetics and molecular bases of RP leading to the successful implementation of gene therapy for some types of mutations, with visual restoration in human patients. Yet, genetic heterogeneity of RP makes mutation-independent approaches highly desirable, although many obstacles pave the way to general strategies for treating this complex disease, which remains orphan. The review will focus on treatments for RP based on pharmacological tools, choosing, among the many ongoing studies, approaches which rely on strong experimental evidence or rationale. For perspective treatments, new concepts are foreseen to emerge from basic studies elucidating the pathways connecting the primary mutations to photoreceptor death, possibly revealing common molecular targets for drug intervention.


PLOS ONE | 2012

Environmental Enrichment Extends Photoreceptor Survival and Visual Function in a Mouse Model of Retinitis Pigmentosa

Ilaria Barone; Elena Novelli; Ilaria Piano; Claudia Gargini; Enrica Strettoi

Slow, progressive rod degeneration followed by cone death leading to blindness is the pathological signature of all forms of human retinitis pigmentosa (RP). Therapeutic schemes based on intraocular delivery of neuroprotective agents prolong the lifetime of photoreceptors and have reached the stage of clinical trial. The success of these approaches depends upon optimization of chronic supply and appropriate combination of factors. Environmental enrichment (EE), a novel neuroprotective strategy based on enhanced motor, sensory and social stimulation, has already been shown to exert beneficial effects in animal models of various disorders of the CNS, including Alzheimer and Huntington disease. Here we report the results of prolonged exposure of rd10 mice, a mutant strain undergoing progressive photoreceptor degeneration mimicking human RP, to such an enriched environment from birth. By means of microscopy of retinal tissue, electrophysiological recordings, visual behaviour assessment and molecular analysis, we show that EE considerably preserves retinal morphology and physiology as well as visual perception over time in rd10 mutant mice. We find that protective effects of EE are accompanied by increased expression of retinal mRNAs for CNTF and mTOR, both factors known as instrumental to photoreceptor survival. Compared to other rescue approaches used in similar animal models, EE is highly effective, minimally invasive and results into a long-lasting retinal protection. These results open novel perspectives of research pointing to environmental strategies as useful tools to extend photoreceptor survival.


Neurochemical Research | 2012

Distribution of Serotonin Receptor of Type 6 (5-HT6) in Human Brain Post-mortem. A Pharmacology, Autoradiography and Immunohistochemistry Study

Donatella Marazziti; Stefano Baroni; Andrea Pirone; Gino Giannaccini; Laura Betti; Lara Schmid; Elena Vatteroni; Lionella Palego; Franco Borsini; Fabio Bordi; Ilaria Piano; Claudia Gargini; Maura Castagna; Mario Catena Dell’Osso; Antonio Lucacchini

The aim of this study was to investigate the distribution of serotonin (5-HT) receptors of type 6 (5-HT6) in postmortem human prefrontal cortex, striatum and hippocampus. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT6 receptor distribution was explored by the [125I]SB-258585 binding to brain membranes followed by the pharmacological characterization, where possible, and by autoradiographic, immunohistochemical and immunofluorescence evaluations. A specific and saturable [125I]SB-258585 binding was detected in striatum only, with a pharmacological characterization consistent with that of a 5-HT6 receptor. The autoradiography showed the presence of a specific [125I]SB-258585 binding distributed homogeneously in caudate, putamen and accumbens. The immunohistochemistry, carried out in the striatum only, coupled with the immunofluorescence with glial fibrillary acidic protein (GFAP) and parvalbumin (PV) showed the co-localization of 5-HT6 receptor with PV, while indicating that this receptor subtype was expressed in neurons and not in astrocytes. Taken together, the present findings showed the presence of a higher density of 5-HT6 receptors, as labeled by [125I]SB-258585, in striatum than in hippocampus and prefrontal cortex, and specifically within the neuronal body. In addition, they would suggest that striatum is one of the major potential CNS targets linked to 5-HT6 receptor modulation.


Neurochemistry International | 2013

Serotonin receptor of type 6 (5-HT6) in human prefrontal cortex and hippocampus post-mortem: An immunohistochemical and immunofluorescence study

Donatella Marazziti; Stefano Baroni; Andrea Pirone; Gino Giannaccini; Laura Betti; Giovanna Testa; Lara Schmid; Lionella Palego; Franco Borsini; Fabio Bordi; Ilaria Piano; Claudia Gargini; Maura Castagna; Mario Catena-Dell'Osso; Antonio Lucacchini

Given the paucity of data on the distribution of serotonin (5-HT) receptors of type 6 (5-HT(6)) in the human brain, the aim of this study was to investigate their distribution in postmortem human prefrontal cortex, striatum and hippocampus by either immunohistochemical or immunofluorescence techniques. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT(6) receptor distribution was explored by the [(125)I]SB-258585 binding to brain membranes followed by immunohistochemical and immunofluorescence evaluations. A specific [(125)I]SB-258585 binding was detected in all the regions under investigation, whilst the content in the hippocampus and cortex being about 10-30 times lower than in the striatum. Immunohistochemistry and double-label immunofluorescence microscopy experiments, carried out in the prefrontal cortex and hippocampus only, since data in the striatum were already published, showed the presence of 5-HT(6) receptors in both pyramidal and glial cells of prefrontal cortex, while positive cells were mainly pyramidal neurons in the hippocampus. The heterogeneous distribution of 5-HT(6) receptors provides a preliminary explanation of how they might regulate different functions in different brain areas, such as, perhaps, brain trophism in the cortex and neuronal firing in the hippocampus. This study, taking into account all the limitations due to the postmortem model used, represents the starting point to explore the 5-HT(6) receptor functionality and its sub-cellular distribution.


Frontiers in Cellular Neuroscience | 2016

Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes.

Ilaria Piano; Elena Novelli; Luca Della Santina; Enrica Strettoi; Luigi Cervetto; Claudia Gargini

The notion that diabetic retinopathy (DR) is essentially a micro-vascular disease has been recently challenged by studies reporting that vascular changes are preceded by signs of damage and loss of retinal neurons. As to the mode by which neuronal death occurs, the evidence that apoptosis is the main cause of neuronal loss is far from compelling. The objective of this study was to investigate these controversies in a mouse model of streptozotocin (STZ) induced diabetes. Starting from 8 weeks after diabetes induction there was loss of rod but not of cone photoreceptors, together with reduced thickness of the outer and inner synaptic layers. Correspondingly, rhodopsin expression was downregulated and the scotopic electroretinogram (ERG) is suppressed. In contrast, cone opsin expression and photopic ERG response were not affected. Suppression of the scotopic ERG preceded morphological changes as well as any detectable sign of vascular alteration. Only sparse apoptotic figures were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and glia was not activated. The physiological autophagy flow was altered instead, as seen by increased LC3 immunostaining at the level of outer plexiform layer (OPL) and upregulation of the autophagic proteins Beclin-1 and Atg5. Collectively, our results show that the streptozotocin induced DR in mouse initiates with a functional loss of the rod visual pathway. The pathogenic pathways leading to cell death develop with the initial dysregulation of autophagy well before the appearance of signs of vascular damage and without strong involvement of apoptosis.


European Journal of Neuroscience | 2013

Cone survival and preservation of visual acuity in an animal model of retinal degeneration

Ilaria Piano; Elena Novelli; Paolo Gasco; Riccardo Ghidoni; Enrica Strettoi; Claudia Gargini

The prevention of cone loss during retinal degeneration is a major goal of most therapeutic strategies in retinal degenerative diseases. An intriguing issue in the current research in this field is to understand why a genetic mutation that affects rods eventually leads to cone death. The main objective of the present study was to investigate to what extent rescuing rods from degeneration affects the survival of cones and prevents functional impairment of the visual performance. To this purpose, we compared rod and cone viabilities by both ex vivo and in vivo determinations in the rd10 mutant mouse, a validated model of human retinitis pigmentosa. The ex vivo experiments included morphological and biochemical tests, whereas in vivo studies compared the rod‐mediated scotopic with the cone‐mediated photopic electroretinogram. We also determined the overall visual performance by behaviorally testing the visual acuity (VA). The electroretinogram measurements showed that the kinetics of the photopic response in rd10 mice was slowed down with respect to the age‐paired wild‐type at a very early stage of the disease, when rods were still present and responsive. We then tested cone viability and function under a pharmacological scheme previously shown to prolong rod survival. The treatment consisted of eye drop administration of myriocin, an inhibitor of the biosynthesis of ceramide, a powerful proapoptotic messenger. The results of biochemical, morphological and functional assays converged to show that, in treated rd10 mice cone photoreceptors, the inner retina and overall visual performance were preserved well after rod death.


Acta Histochemica | 2011

Pituitary adenylate cyclase-activating peptide (PACAP) immunoreactivity distribution in the small intestine of the adult New Hampshire chicken

Andrea Pirone; Ding Baoan; Ilaria Piano; Luca Della Santina; Alessandro Baglini; Carla Lenzi

We conducted a study in which we demonstrated by means of immunoperoxidase and immunofluorescence methods the presence of pituitary adenylate cyclase-activating peptide 38 (PACAP-38) immunoreactivity in the small intestine of adult New Hampshire chickens and its co-localization with VIP. In particular we describe for the first time the presence of PACAP-positive cells in the epithelium of crypts and villi. Using double immunostaining, we observed that these two peptides were widely co-localized in the nerve structures of duodenum and jejunum with the exception of the ileum, where we noticed a faint co-localization regarding the nerve fibers of the lamina propria of the villi. Furthermore, the two peptides were occasionally co-stored in the epithelial cells of the mucosa. Our findings suggest that in the chicken small intestine, PACAP can be considered, not only as a neuromodulator released by nerve elements, but also as a gut hormone secreted by endocrine cells, and it appears likely to have a role in the regulation of important intestinal physiological functions.


Nitric Oxide | 2015

Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions

Lara Testai; V. D'Antongiovanni; Ilaria Piano; Alma Martelli; Valentina Citi; E. Duranti; Agostino Virdis; Corrado Blandizzi; Claudia Gargini; Maria Cristina Breschi; Vincenzo Calderone

Hydrogen sulfide (H2S) and nitric oxide (NO) play pivotal roles in the cardiovascular system. Conflicting results have been reported about their cross-talk. This study investigated their interplays in coronary bed of normotensive (NTRs) and spontaneously hypertensive rats (SHRs). The effects of H2S- (NaHS) and NO-donors (sodium nitroprusside, SNP) on coronary flow (CF) were measured in Langendorff-perfused hearts of NTRs and SHRs, in the absence or in the presence of propargylglycine (PAG, inhibitor of H2S biosynthesis), L-NAME (inhibitor of NO biosynthesis), ODQ (inhibitor of guanylate cyclase), L-Cysteine (substrate for H2S biosynthesis) or L-Arginine (substrate for NO biosynthesis). In NTRs, NaHS and SNP increased CF; their effects were particularly evident in Angiotensin II (AngII)-contracted coronary arteries. The dilatory effects of NaHS were abolished by L-NAME and ODQ; conversely, PAG abolished the effects of SNP. In SHRs, high levels of myocardial ROS production were observed. NaHS and SNP did not reduce the oxidative stress, but produced clear increases of the basal CF. In contrast, in AngII-contracted coronary arteries of SHRs, significant hyporeactivity to NaHS and SNP was observed. In SHRs, the vasodilatory effects of NaHS were only modestly affected by L-NAME and ODQ; PAG poorly influenced the effects of SNP. Then, in NTRs, the vascular actions of H2S required NO and vice versa. By contrast, in SHRs, the H2S-induced actions scarcely depend on NO release; as well, the NO effects are largely H2S-independent. These results represent the first step for understanding pathophysiological mechanisms of NO/H2S interplays under both normotensive and hypertensive conditions.

Collaboration


Dive into the Ilaria Piano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Novelli

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrica Strettoi

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge