Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Piccini is active.

Publication


Featured researches published by Ilaria Piccini.


Circulation-cardiovascular Genetics | 2011

PITX2c Is Expressed in the Adult Left Atrium, and Reducing Pitx2c Expression Promotes Atrial Fibrillation Inducibility and Complex Changes in Gene Expression

Paulus Kirchhof; Peter C. Kahr; Sven Kaese; Ilaria Piccini; Ismail Vokshi; H. H. Scheld; Heinrich Rotering; Lisa Fortmueller; Sandra Laakmann; Sander Verheule; Ulrich Schotten; Larissa Fabritz; Nigel A. Brown

Background—Intergenic variations on chromosome 4q25, close to the PITX2 transcription factor gene, are associated with atrial fibrillation (AF). We therefore tested whether adult hearts express PITX2 and whether variation in expression affects cardiac function. Methods and Results—mRNA for PITX2 isoform c was expressed in left atria of human and mouse, with levels in right atrium and left and right ventricles being 100-fold lower. In mice heterozygous for Pitx2c (Pitx2c+/−), left atrial Pitx2c expression was 60% of wild-type and cardiac morphology and function were not altered, except for slightly elevated pulmonary flow velocity. Isolated Pitx2c+/− hearts were susceptible to AF during programmed stimulation. At short paced cycle lengths, atrial action potential durations were shorter in Pitx2c+/− than in wild-type. Perfusion with the &bgr;-receptor agonist orciprenaline abolished inducibility of AF and reduced the effect on action potential duration. Spontaneous heart rates, atrial conduction velocities, and activation patterns were not affected in Pitx2c+/− hearts, suggesting that action potential duration shortening caused wave length reduction and inducibility of AF. Expression array analyses comparing Pitx2c+/− with wild-type, for left atrial and right atrial tissue separately, identified genes related to calcium ion binding, gap and tight junctions, ion channels, and melanogenesis as being affected by the reduced expression of Pitx2c. Conclusions—These findings demonstrate a physiological role for PITX2 in the adult heart and support the hypothesis that dysregulation of PITX2 expression can be responsible for susceptibility to AF.


Journal of the American College of Cardiology | 2011

Load-Reducing Therapy Prevents Development of Arrhythmogenic Right Ventricular Cardiomyopathy in Plakoglobin-Deficient Mice

Larissa Fabritz; Mark G. Hoogendijk; Brendon P. Scicluna; Shirley C.M. van Amersfoorth; Lisa Fortmueller; Susanne Wolf; Sandra Laakmann; Nina Kreienkamp; Ilaria Piccini; Günter Breithardt; Patricia Ruiz Noppinger; Henning Witt; Klaus Ebnet; Thomas Wichter; Bodo Levkau; Werner W. Franke; Sebastian Pieperhoff; Jacques M.T. de Bakker; Ruben Coronel; Paulus Kirchhof

OBJECTIVES We used a murine model of arrhythmogenic right ventricular cardiomyopathy (ARVC) to test whether reducing ventricular load prevents or slows development of this cardiomyopathy. BACKGROUND At present, no therapy exists to slow progression of ARVC. Genetically conferred dysfunction of the mechanical cell-cell connections, often associated with reduced expression of plakoglobin, is thought to cause ARVC. METHODS Littermate pairs of heterozygous plakoglobin-deficient mice (plako(+/-)) and wild-type (WT) littermates underwent 7 weeks of endurance training (daily swimming). Mice were randomized to blinded load-reducing therapy (furosemide and nitrates) or placebo. RESULTS Therapy prevented training-induced right ventricular (RV) enlargement in plako(+/-) mice (RV volume: untreated plako(+/-) 136 ± 5 μl; treated plako(+/-) 78 ± 5 μl; WT 81 ± 5 μl; p < 0.01 for untreated vs. WT and untreated vs. treated; mean ± SEM). In isolated, Langendorff-perfused hearts, ventricular tachycardias (VTs) were more often induced in untreated plako(+/-) hearts (15 of 25), than in treated plako(+/-) hearts (5 of 19) or in WT hearts (6 of 21, both p < 0.05). Epicardial mapping of the RV identified macro-re-entry as the mechanism of ventricular tachycardia. The RV longitudinal conduction velocity was reduced in untreated but not in treated plako(+/-) mice (p < 0.01 for untreated vs. WT and untreated vs. treated). Myocardial concentration of phosphorylated connexin43 was lower in plako(+/-) hearts with VTs compared with hearts without VTs and was reduced in untreated plako(+/-) compared with WT (both p < 0.05). Plako(+/-) hearts showed reduced myocardial plakoglobin concentration, whereas β-catenin and N-cadherin concentration was not changed. CONCLUSIONS Load-reducing therapy prevents training-induced development of ARVC in plako(+/-) mice.


Journal of Biological Chemistry | 2011

The BTB and CNC Homology 1 (BACH1) Target Genes Are Involved in the Oxidative Stress Response and in Control of the Cell Cycle

Hans-Jörg Warnatz; Dominic Schmidt; Thomas Manke; Ilaria Piccini; Marc Sultan; Tatiana Borodina; Daniela Balzereit; Wasco Wruck; Alexey Soldatov; Martin Vingron; Hans Lehrach; Marie-Laure Yaspo

The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue.

Miao Zhang; Cristina D'Aniello; Arie O. Verkerk; Eva Wrobel; Stefan L. Frank; Dorien Ward-van Oostwaard; Ilaria Piccini; Christian Freund; Jyoti Rao; Guiscard Seebohm; Douwe E. Atsma; Eric Schulze-Bahr; Boris Greber; Milena Bellin

Significance There are few laboratory models that recapitulate human cardiac disease. Here, we created human cell models for Jervell and Lange-Nielsen syndrome (JLNS) in vitro, based on human induced pluripotent stem cells (hiPSCs). JLNS is one of the most severe disorders of heart rhythm and can cause sudden death in young patients. JLNS is inherited recessively and is caused by homozygous mutations in the slow component of the delayed rectifier potassium current, IKs. Cardiomyocytes (CMs) from two independent sets of patient-derived and engineered hiPSCs showed electrophysiological defects that reflect the severity of the condition in patients. Our work allowed better understanding of the mechanisms of recessive inheritance. Furthermore, JLNS-CMs showed increased sensitivity to proarrhythmic drugs, which could be rescued pharmacologically, demonstrating the potential of hiPSC-CMs in drug testing. Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and β subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K+ current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.


Genome Biology | 2007

Gene expression variation in Down's syndrome mice allows prioritization of candidate genes

Marc Sultan; Ilaria Piccini; Daniela Balzereit; Ralf Herwig; Nidhi G. Saran; Hans Lehrach; Roger H. Reeves; Marie-Laure Yaspo

BackgroundDowns syndrome (DS), or trisomy 21, is a complex developmental disorder that exhibits many clinical signs that vary in occurrence and severity among patients. The molecular mechanisms responsible for DS have thus far remained elusive. We argue here that normal variation in gene expression in the population contributes to the heterogeneous clinical picture of DS, and we estimated the amplitude of this variation in 50 mouse orthologs of chromosome 21 genes in brain regions of Ts65Dn (a mouse model of DS). We analyzed the RNAs of eight Ts65Dn and eight euploid mice by real-time polymerase chain reaction.ResultsIn pooled RNAs, we confirmed that trisomic/euploid gene expression ratios were close to 1.5. However, we observed that inter-individual gene expression levels spanned a broad range of values. We identified three categories of genes: genes with expression levels consistently higher in Ts65Dn than in euploids (9, 17, and 7 genes in cerebellum, cortex, and midbrain, respectively); genes whose expression levels partially overlap between the two groups (10, 9, and 14 genes); and genes with intermingled expression, which cannot be used to differentiate trisomics from euploids (12, 5 and 9 genes). Of the genes in the first category, App, Cbr1, and Mrps6 exhibited tight regulation in the three tissues and are therefore attractive candidates for further research.ConclusionThis is the first analysis addressing inter-individual gene expression levels as a function of trisomy. We propose a strategy allowing discrimination between candidates for the constant features of DS and those genes that may contribute to the partially penetrant signs of DS.


PLOS ONE | 2011

Systematic Analysis of Gene Expression Differences between Left and Right Atria in Different Mouse Strains and in Human Atrial Tissue

Peter C. Kahr; Ilaria Piccini; Larissa Fabritz; Boris Greber; Hans R. Schöler; Hans H. Scheld; Andreas Hoffmeier; Nigel A. Brown; Paulus Kirchhof

Background Normal development of the atria requires left-right differentiation during embryonic development. Reduced expression of Pitx2c (paired-like homeodomain transcription factor 2, isoform c), a key regulator of left-right asymmetry, has recently been linked to atrial fibrillation. We therefore systematically studied the molecular composition of left and right atrial tissue in adult murine and human atria. Methods We compared left and right atrial gene expression in healthy, adult mice of different strains and ages by employing whole genome array analyses on freshly frozen atrial tissue. Selected genes with enriched expression in either atrium were validated by RT-qPCR and Western blot in further animals and in shock-frozen left and right atrial appendages of patients undergoing open heart surgery. Results We identified 77 genes with preferential expression in one atrium that were common in all strains and age groups analysed. Independent of strain and age, Pitx2c was the gene with the highest enrichment in left atrium, while Bmp10, a member of the TGFβ family, showed highest enrichment in right atrium. These differences were validated by RT-qPCR in murine and human tissue. Western blot showed a 2-fold left-right concentration gradient in PITX2 protein in adult human atria. Several of the genes and gene groups enriched in left atria have a known biological role for maintenance of healthy physiology, specifically the prevention of atrial pathologies involved in atrial fibrillation, including membrane electrophysiology, metabolic cellular function, and regulation of inflammatory processes. Comparison of the array datasets with published array analyses in heterozygous Pitx2c+/− atria suggested that approximately half of the genes with left-sided enrichment are regulated by Pitx2c. Conclusions Our study reveals systematic differences between left and right atrial gene expression and supports the hypothesis that Pitx2c has a functional role in maintaining “leftness” in the atrium in adult murine and human hearts.


Cell Stem Cell | 2016

Stepwise Clearance of Repressive Roadblocks Drives Cardiac Induction in Human ESCs

Jyoti Rao; Martin J. Pfeiffer; Stefan L. Frank; Kenjiro Adachi; Ilaria Piccini; Roberto Quaranta; Marcos J. Araúzo-Bravo; Juliane P. Schwarz; Dennis Schade; Sebastian A. Leidel; Hans R. Schöler; Guiscard Seebohm; Boris Greber

Cardiac induction requires stepwise integration of BMP and WNT pathway activity. Human embryonic stem cells (hESCs) are developmentally and clinically relevant for studying the poorly understood molecular mechanisms downstream of these cascades. We show that BMP and WNT signaling drive cardiac specification by removing sequential roadblocks that otherwise redirect hESC differentiation toward competing fates, rather than activating a cardiac program per se. First, BMP and WNT signals pattern mesendoderm through cooperative repression of SOX2, a potent mesoderm antagonist. BMP signaling promotes miRNA-877 maturation to induce SOX2 mRNA degradation, while WNT-driven EOMES induction transcriptionally represses SOX2. Following mesoderm formation, cardiac differentiation requires inhibition of WNT activity. We found that WNT inhibition serves to restrict expression of anti-cardiac regulators MSX1 and CDX2/1. Conversely, their simultaneous disruption partially abrogates the requirement for WNT inactivation. These results suggest that human cardiac induction depends on multi-stage repression of alternate lineages, with implications for deriving expandable cardiac stem cells.


Stem Cells | 2015

Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation.

Miao Zhang; Jan S. Schulte; Alexander Heinick; Ilaria Piccini; Jyoti Rao; Roberto Quaranta; Dagmar Zeuschner; Daniela Malan; Kee-Pyo Kim; Albrecht Röpke; Philipp Sasse; Marcos J. Araúzo-Bravo; Guiscard Seebohm; Hans R. Schöler; Larissa Fabritz; Paulus Kirchhof; Frank U. Müller; Boris Greber

Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large‐scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high‐efficiency procedure for generating CMs both in two‐dimensional (2D) and three‐dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost‐efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin‐free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time‐course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture‐induced maturation of the resulting CMs. This suggested that hPSC‐CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC‐CMs to functional readouts and thus define the cornerstones of culture‐induced maturation. Stem Cells 2015;33:1456–1469


Frontiers in Physiology | 2017

Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells

Maike Marczenke; Ilaria Piccini; Isabella Mengarelli; Jakob Fell; Albrecht Röpke; Guiscard Seebohm; Arie O. Verkerk; Boris Greber

The ultrarapid delayed rectifier K+ current (IKur), mediated by Kv1.5 channels, constitutes a key component of the atrial action potential. Functional mutations in the underlying KCNA5 gene have been shown to cause hereditary forms of atrial fibrillation (AF). Here, we combine targeted genetic engineering with cardiac subtype-specific differentiation of human induced pluripotent stem cells (hiPSCs) to explore the role of Kv1.5 in atrial hiPSC-cardiomyocytes. CRISPR/Cas9-mediated mutagenesis of integration-free hiPSCs was employed to generate a functional KCNA5 knockout. This model as well as isogenic wild-type control hiPSCs could selectively be differentiated into ventricular or atrial cardiomyocytes at high efficiency, based on the specific manipulation of retinoic acid signaling. Investigation of electrophysiological properties in Kv1.5-deficient cardiomyocytes compared to isogenic controls revealed a strictly atrial-specific disease phentoype, characterized by cardiac subtype-specific field and action potential prolongation and loss of 4-aminopyridine sensitivity. Atrial Kv1.5-deficient cardiomyocytes did not show signs of arrhythmia under adrenergic stress conditions or upon inhibiting additional types of K+ current. Exposure of bulk cultures to carbachol lowered beating frequencies and promoted chaotic spontaneous beating in a stochastic manner. Low-frequency, electrical stimulation in single cells caused atrial and mutant-specific early afterdepolarizations, linking the loss of KCNA5 function to a putative trigger mechanism in familial AF. These results clarify for the first time the role of Kv1.5 in atrial hiPSC-cardiomyocytes and demonstrate the feasibility of cardiac subtype-specific disease modeling using engineered hiPSCs.


Stem Cells | 2015

Universal Cardiac Induction of Human Pluripotent Stem Cells in 2D and 3D formats - Implications for In-Vitro Maturation

Miao Zhang; Jan S. Schulte; Alexander Heinick; Ilaria Piccini; Jyoti Rao; Roberto Quaranta; Dagmar Zeuschner; Daniela Malan; Kee-Pyo Kim; Albrecht Röpke; Philipp Sasse; Marcos J. Araúzo-Bravo; Guiscard Seebohm; Hans R. Schöler; Larissa Fabritz; Paulus Kirchhof; Frank U. Müller; Boris Greber

Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large‐scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high‐efficiency procedure for generating CMs both in two‐dimensional (2D) and three‐dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost‐efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin‐free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time‐course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture‐induced maturation of the resulting CMs. This suggested that hPSC‐CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC‐CMs to functional readouts and thus define the cornerstones of culture‐induced maturation. Stem Cells 2015;33:1456–1469

Collaboration


Dive into the Ilaria Piccini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge