Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Roato is active.

Publication


Featured researches published by Ilaria Roato.


PLOS ONE | 2006

IL-7 Up-Regulates TNF-α-Dependent Osteoclastogenesis in Patients Affected by Solid Tumor

Ilaria Roato; Giacomina Brunetti; Eva Gorassini; Maria Grano; Silvia Colucci; Lisa Bonello; Lucio Buffoni; Roberto Manfredi; Enrico Ruffini; Davide Ottaviani; L. Ciuffreda; Antonio Mussa; Riccardo Ferracini

Background Interleukin-7 (IL-7) is a potent regulator of lymphocyte development, which has also significant effects on bone; in fact it is a potent osteoclastogenic factor. Some human solid tumors produce high IL-7 levels, suggesting a potential IL-7 role on tumor development and progression. Methodology We studied 50 male patients affected by solid tumors, and their blood samples were collected at tumor diagnosis. PBMCs were isolated and cultured with/without IL-7 to study its influence on osteoclastogenesis. Serum and cell culture supernatant IL-7 levels were measured by ELISA. The quantitative analysis of IL-7 expression on T and B cells was performed by Real-Time PCR. Principal Findings Serum IL-7 levels were highest in osteolytic cancer patients, followed by cancer patients without bone lesions, and then healthy controls. We showed the IL-7 production in PBMC cultures and particularly in monocyte and B cell co-cultures. A quantitative analysis of IL-7 expression in T and B cells confirmed that B cells had a high IL-7 expression. In all cell culture conditions, IL-7 significantly increased osteoclastogenesis and an anti-IL-7 antibody inhibited it. We demonstrated that IL-7 supports OC formation by inducing the TNF-α production and low RANKL levels, which synergize in promoting osteoclastogenesis. Conclusions We demonstrated the presence of high serum IL-7 levels in patients with bone metastasis, suggesting the use of serum IL-7 level as a clinical marker of disease progression and of bone involvement. Moreover, we showed the capability of IL-7 to stimulate spontaneous osteoclastogenesis of bone metastatic patients and to induce osteoclastogenesis in cancer patients without bone involvement. These findings add further details to the disclosure of the mechanisms controlling bone metastasis in solid tumors.


The FASEB Journal | 2004

Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement

Ilaria Roato; Maria Grano; Giacomina Brunetti; Silvia Colucci; Antonio Mussa; Oscar Bertetto; Riccardo Ferracini

Bone metastases represents a common cause of morbidity in patients suffering many types of cancer: breast, lung, kidney, prostate, and multiple myeloma. Osteolytic metastases often cause severe pain, pathologic fractures, hypercalcemia, spinal cord compression, and other nervecompression syndromes. Osteoclasts (OCs), cells deriving from granulocitic‐macrophagic lineage, are responsible for osteolysis, which may be reduced by inhibiting both OCs formation and activity. By studying bone osteolytic metastases mechanism in solid tumors, we report here our findings that cancer patients with bone involvement display an increase in osteoclasts precursors, compared with both healthy controls and cancer patients without bone metastases. Peripheral blood mononuclear cells (PBMCs) from patients with osteolytic lesions show osteoclastogenesis without adding M‐CSF, RANKL, or TNF‐α. However, these factors are necessary to generate OCs from healthy donors, non‐osteolytic patient PBMCs and T‐cell depleted PBMCs. OCs derived from cancer patients show more resorption pits than OCs from healthy donors and express genes involved in osteoclastogenesis. Our data show that a spontaneous osteoclastogenesis occurs in patients affected by osteolytic lesions and may be supported by factors released by T lymphocytes. These factors could give a priming to osteoclast precursors and promote osteoclastogenesis. In fact, T‐cell depleted PBMCs do not differentiate into OCs without adding M‐CSF and RANKL. Moreover, we do not obtain a higher number of OCs by increasing RANKL doses in cultures, and OCs and T lymphocytes mRNA level are detected for TNF‐α but not for RANKL. The addition of OPG to PBMCs cultures do not modify spontaneous osteoclastogenesis. A neutralizing anti‐TNF‐α antibody in unstimulated PBMC cultures of osteolytic cancer patients induces an inhibition of osteoclastogenesis. These data suggest that TNF‐α may be responsible for osteoclastogenesis in these tumors.


Journal of Cellular Physiology | 2011

Expression pattern of receptor activator of NFκB (RANK) in a series of primary solid tumors and related bone metastases.

Daniele Santini; Giuseppe Perrone; Ilaria Roato; Laura Godio; Francesco Pantano; Donatella Grasso; Antonio Russo; Bruno Vincenzi; Maria Elisabetta Fratto; Roberto Sabbatini; Chiara Della Pepa; Camillo Porta; Alessandro Del Conte; Gaia Schiavon; Alfredo Berruti; Rosa Maria Tomasino; Mauro Papotti; Nicola Papapietro; Andrea Onetti Muda; Vincenzo Denaro; Giuseppe Tonini

Receptor activator of NFκB ligand (RANKL), RANK, and osteoprotegerin (OPG) represent the key regulators of bone metabolism both in normal and pathological conditions, including bone metastases. To our knowledge, no previous studies investigated and compared RANK expression in primary tumors and in bone metastases from the same patient. We retrospectively examined RANK expression by immunohistochemistry in 74 bone metastases tissues from solid tumors, mostly breast, colorectal, renal, lung, and prostate cancer. For 40 cases, tissue from the corresponding primary tumor was also analyzed. Sixty‐six (89%) of the 74 bone metastases were RANK‐positive and, among these, 40 (59.5%) showed more than 50% of positive tumor cells. The median percentage of RANK‐positive cells was 60% in primary tumors and metastases, without any statistically significant difference between the two groups (P = 0.194). The same percentage was obtained by considering only cases with availability of samples both from primary and metastasis. Our study shows that RANK is expressed by solid tumors, with high concordance between bone metastasis and corresponding primary tumor. These data highlight the central role of RANK/RANKL/OPG pathway as potential therapeutic target not only in bone metastasis management, but also in the adjuvant setting. J. Cell. Physiol. 226: 780–784, 2011.


PLOS ONE | 2008

A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging

Silvia Miretti; Ilaria Roato; Riccardo Taulli; Carola Ponzetto; Michele Cilli; Martina Olivero; Maria Flavia Di Renzo; Laura Godio; Adriana Albini; Paolo Buracco; Riccardo Ferracini

Background Osteosarcoma (OSA) is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c) murine OSA model, using a cell line derived from a spontaneous murine tumor. Methodology The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. Principal Findings Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. Conclusions This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation.


The FASEB Journal | 2004

Spontaneous osteoclast formation from peripheral blood mononuclear cells in postmenopausal osteoporosis

Patrizia D'Amelio; Anastasia Grimaldi; Gian Piero Pescarmona; Cristina Tamone; Ilaria Roato; Giancarlo Isaia

Osteoclasts are cells involved in bone reabsorbing and hence in postmenopausal bone loss. There is no evidence of increased in vitro spontaneous osteoclast formation in postmenopausal osteoporosis. The aim of our study was to evaluate spontaneous osteoclastogenesis in osteoporosis. Bone mineral density, markers of bone turnover, and cultures of peripheral blood mononuclear cells (PBMC) on dentine slices with or without the addition of 1,25‐OH vitamin D3 ([10−8 M]) were obtained from 18 osteoporotic women and 15 controls. To verify cytokine production by PBMC cultures, supernatants were collected on days 3 and 6 and tested for TNF‐α and RANKL. The data obtained were compared between patients and controls by one‐way ANOVA and correlated by Pearsons coefficient. We found a significant increase in osteoclast formation and bone reabsorbing activity in patients with respect to controls; in addition, the production of TNF‐α and RANKL is significantly higher in patients. Furthermore, osteoclast number is inversely correlated with bone mineral density and directly with RANKL in culture supernatants. Our data demonstrated an increased spontaneous osteoclastogenesis in women affected by postmenopausal osteoporosis: this increase may be explained by the higher production of TNF‐α and RANKL by PBMC cultures of osteoporotic patients.


Journal of Immunology | 2004

Leukemia-Derived Immature Dendritic Cells Differentiate into Functionally Competent Mature Dendritic Cells That Efficiently Stimulate T Cell Responses

Alessandro Cignetti; Antonella Vallario; Ilaria Roato; Paola Circosta; Bernardino Allione; Laura Casorzo; Paolo Ghia; Federico Caligaris-Cappio

Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-α, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8+ CTLs and CD4+ T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.


Osteoporosis International | 2011

Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures

Patrizia D’Amelio; Ilaria Roato; L. D’Amico; L. Veneziano; E. Suman; Francesca Sassi; Giuseppina Bisignano; Riccardo Ferracini; G. Gargiulo; F. Castoldi; Gian Piero Pescarmona; Giancarlo Isaia

SummaryThis study evaluates cytokines production in bone and bone marrow of patients with an osteoporotic fracture or with osteoarthritis by real time PCR, Western blot and immunohistochemistry. We demonstrate that the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in patients with osteoporotic fractures.IntroductionFragility fractures are the resultant of low bone mass and poor bone architecture typical of osteoporosis. Cytokines involved in the control of bone cell maturation and function are produced by both bone itself and bone marrow cells, but the roles of these two sources in its control and the amounts they produce are not clear. This study compares their production in patients with an osteoporotic fracture and those with osteoarthritis.MethodsWe evaluated 52 femoral heads from women subjected to hip-joint replacement surgery for femoral neck fractures due to low-energy trauma (37), or for osteoarthritis (15). Total RNA was extracted from both bone and bone marrow, and quantitative PCR was used to identify the receptor activator of nuclear factor kB Ligand (RANKL), osteoprotegerin (OPG), macrophage colony stimulating factor (M-CSF), transforming growth factor β (TGFβ), Dickoppf-1 (DKK-1) and sclerostin (SOST) expression. Immunohistochemistry and Western blot were performed in order to quantify and localize in bone and bone marrow the cytokines.ResultsWe found an increase of RANKL/OPG ratio, M-CSF, SOST and DKK-1 in fractured patients, whereas TGFβ was increased in osteoarthritic bone. Bone marrow produced greater amounts of RANKL, M-CSF and TGFβ compared to bone, whereas the production of DKK-1 and SOST was higher in bone.ConclusionsWe show that bone marrow cells produced the greater amount of pro-osteoclastogenic cytokines, whereas bone cells produced higher amount of osteoblast inhibitors in patients with fragility fracture, thus the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in these patients.


Cells | 2015

NAD+-Metabolizing Ectoenzymes in Remodeling Tumor–Host Interactions: The Human Myeloma Model

Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Andrea Zito; Ilaria Roato; Fabio Morandi; Danilo Marimpietri; Marina Bolzoni; Denise Toscani; Robert J. Oldham; Massimiliano Cuccioloni; A. Kate Sasser; Vito Pistoia; Nicola Giuliani; Fabio Malavasi

Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD+, belongs to the ectoenzymatic network generating intracellular Ca2+-active metabolites. Within this general framework, the extracellular conversion of NAD+ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo.


Cancer Research | 2015

Microenvironment modulated metastatic CD133+/CXCR4+/EpCAM- lung cancer initiating cells sustain tumor dissemination and correlate with poor prognosis

Giulia Bertolini; Lucia D'Amico; Massimo Moro; Elena Landoni; Paola Perego; Rosalba Miceli; Laura Gatti; Francesca Andriani; Donald Wong; Roberto Caserini; Monica Tortoreto; Massimo Milione; Riccarrdo Ferracini; Luigi Mariani; Ugo Pastorino; Ilaria Roato; Gabriella Sozzi; Luca Roz

Metastasis is the main reason for lung cancer-related mortality, but little is known about specific determinants of successful dissemination from primary tumors and metastasis initiation. Here, we show that CD133(+)/CXCR4(+) cancer-initiating cells (CIC) directly isolated from patient-derived xenografts (PDX) of non-small cell lung cancer are endowed with superior ability to seed and initiate metastasis at distant organs. We additionally report that CXCR4 inhibition successfully prevents the increase of cisplatin-resistant CD133(+)/CXCR4(+) cells in residual tumors and their metastatization. Immunophenotypic analysis of lung tumor cells intravenously injected or spontaneously disseminated to murine lungs demonstrated the survival advantage and increased colonization ability of a specific subset of CD133(+)/CXCR4(+) with reduced expression of epithelial cell adhesion molecule (EpCAM(-)), which also shows the greatest in vitro invasive potential. We next prove that recovered disseminated cells from lungs of PDX-bearing mice enriched for CD133(+)/CXCR4(+)/EpCAM(-) CICs are highly tumorigenic and metastatic. Importantly, microenvironment stimuli eliciting epithelial-to-mesenchymal transition, including signals from cancer-associated fibroblasts, are able to increase the dissemination potential of lung cancer cells through the generation of the CD133(+)/CXCR4(+)/EpCAM(-) subset. These findings also have correlates in patient samples where disseminating CICs are enriched in metastatic lymph nodes (20-fold, P = 0.006) and their detection in primary tumors is correlated with poor clinical outcome (disease-free survival: P = 0.03; overall survival: P = 0.05). Overall, these results highlight the importance of specific cellular subsets in the metastatic process, the need for in-depth characterization of disseminating tumor cells, and the potential of therapeutic strategies targeting both primary tumor and tumor-microenvironment interactions.


Annals of the New York Academy of Sciences | 2015

Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche

Valeria Quarona; Valentina Ferri; Antonella Chillemi; Marina Bolzoni; Cristina Mancini; Gianluca Zaccarello; Ilaria Roato; Fabio Morandi; Danilo Marimpietri; Giuliano Faccani; Eugenia Martella; Vito Pistoia; Nicola Giuliani; Alberto L. Horenstein; Fabio Malavasi

The bone marrow provides a protected environment for generating a vast array of cell types. Bones are thus a dynamic source of structural components and soluble factors used either locally or at a distance from their site of production. We discuss the role of ectoenzymes in the bone niche where human myeloma grows. Selected ectoenzymes have been tested for their ability to promote production of substrates involved in signaling, synthesis of growth factors and hormones, and modulation of the immune response. Because of the difficulty of simultaneously tracking all these activities, we narrow our focus to events potentially influencing synthesis of adenosine (ADO), an important regulator of multiple biological functions, including local immunological tolerance. Our working hypothesis, to be discussed and partially tested herein, is that CD38, and likely BST1/CD157—both NAD+‐consuming enzymes, are active in the myeloma niche and lead a discontinuous chain of ectoenzymes whose final products are exploited by the neoplastic plasma cell as part of its local survival strategy. Coadjuvant ectoenzymes include PC‐1/CD203a, CD39, and CD73, which control the production of ADO. Results discussed here and from ongoing experiments indicate that the myeloma niche hosts the canonical, as well as alternative, pathways of ADO generation. Other possibilities are presented and discussed.

Collaboration


Dive into the Ilaria Roato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge