Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Schiavoni is active.

Publication


Featured researches published by Ilaria Schiavoni.


Journal of Immunology | 2003

HIV-1 Nef Induces the Release of Inflammatory Factors from Human Monocyte/Macrophages: Involvement of Nef Endocytotic Signals and NF-κB Activation

Eleonora Olivetta; Zulema A. Percario; Gianna Fiorucci; Gianfranco Mattia; Ilaria Schiavoni; Caitriona Dennis; Mark Harris; Gianna Romeo; Elisabetta Affabris; Maurizio Federico

It has been recently reported that the endogenous expression of HIV-1 Nef in human monocyte/macrophages induces the release of chemokines and other as yet unidentified soluble factors leading to multiple effects of pathogenic significance, such as the recruitment and activation of quiescent lymphocytes. However, the description of underlying molecular mechanisms remained elusive. We recently demonstrated that human monocyte-derived macrophages (MDM) efficiently internalize soluble rNef, thereby inducing effects largely resembling those observed in cells endogenously expressing Nef. By exploiting the rNef/MDM model, we sought to gain more insights on the molecular mechanisms underlying the response of MDM to Nef. Array analysis for the detection of transcripts from a large number of monokines, chemokines, cytokines, and receptors thereof showed that MDM promptly responded to rNef treatment by increasing the transcription of genes for several inflammatory factors. Analysis of supernatants revealed that rNef treatment induced the release of macrophage inflammatory proteins 1α and 1β, IL-1β, IL-6, and TNF-α. Conversely, rNefs mutated in domains critical for the interaction with the endocytotic machinery (i.e., EE155-156QQ, and DD174-175AA) were ineffective. Interestingly, we found that the Nef-dependent release of inflammatory factors correlated with the activation of the NF-κB transcription factor, mainly in its p50/p50 homodimeric form, and in a de novo protein synthesis-independent manner. Our data add new hints supporting the idea that the presence of Nef is per se heavily detrimental for monocyte/macrophages and relative cross-talking cell types.


Biochemical Journal | 2005

HIV-1 Nef regulates the release of superoxide anions from human macrophages

Eleonora Olivetta; Donatella Pietraforte; Ilaria Schiavoni; Maurizio Minetti; Maurizio Federico; Massimo Sanchez

The NADPH oxidase enzymatic complex participates in the oxidative burst by producing ROS (reactive oxygen species). Altered levels of ROS production may have pathogenetic implications due to the loss of some innate immune functions such as oxidative burst and phagocytosis. Considering that HIV-1 Nef protein plays a primary role in AIDS pathogenesis, by affecting the immune system, we sought to dissect possible effects of Nef on the release of superoxide anions. We show here that the inducible expression of Nef in human phagocytic cells modulates the superoxide release in a biphasic manner. In particular, an early Nef-induced increase of the superoxide release was followed by a dramatic decrease starting from 10 h after the Nef induction. This was observed whatever the presence of cell activators such as GM-CSF (granulocyte/macrophage colony-stimulating factor) or fMLP (N-formyl-L-methionyl-L-leucyl-L-phenylalanine). Whereas the early increase in superoxide release is probably the result of the already described Nef-dependent activation of PAK-2 (p21-activated kinase 2)-Rac2, we were interested in investigating the mechanisms underlying the late inhibition of superoxide release observed originally. In this regard, we individuated at least three independent requirements for the Nef-induced blockade of superoxide release: (i) the active protein synthesis; (ii) both the membrane localization and the interaction with endocytotic machinery of Nef; and (iii) the release of soluble factor(s). Moreover, we observed that IL-10 (interleukin-10) inhibits superoxide release, whereas its depletion restored NADPH oxidase activity. We propose that the cell membrane-to-lysosome Nef transit leads to the synthesis and release of soluble factor(s) and, among them, IL-10 might significantly contribute to the inhibition of NAPDH oxidase activity.


PLOS ONE | 2012

HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies

Paolo Monini; Aurelio Cafaro; Indresh K. Srivastava; Sonia Moretti; Victoria Sharma; Claudia Andreini; Chiara Chiozzini; Flavia Ferrantelli; Maria Rosaria Pavone Cossut; Antonella Tripiciano; Filomena Nappi; Olimpia Longo; Stefania Bellino; Orietta Picconi; Emanuele Fanales-Belasio; Alessandra Borsetti; Elena Toschi; Ilaria Schiavoni; Ilaria Bacigalupo; Elaine Kan; Leonardo Sernicola; Maria Teresa Maggiorella; Katy Montin; Marco Porcu; Patrizia Leone; Pasqualina Leone; Barbara Collacchi; Clelia Palladino; Barbara Ridolfi; Mario Falchi

Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs) via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs). Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.


Vaccine | 2011

A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study

Flavia Ferrantelli; Maria Teresa Maggiorella; Ilaria Schiavoni; Leonardo Sernicola; Erika Olivieri; Stefania Farcomeni; Maria Rosaria Pavone-Cossut; Sonia Moretti; Roberto Belli; Barbara Collacchi; Indresh K. Srivastava; Fausto Titti; Aurelio Cafaro; Susan W. Barnett; Barbara Ensoli

HIV native Tat and V2 loop-deleted Env (EnvΔV2) proteins already proved safe and immunogenic in phase I clinical testing as single vaccine components. Further, a phase II vaccine trial with Tat showed intensification of the therapeutic effects of HAART in successfully treated HIV-infected individuals. Here a pilot study assessed the immunogenicity and protective efficacy of an HIV/AIDS vaccine based on the combination of Tat and EnvΔV2 proteins in cynomolgus macaques against homologous intrarectal challenge with 35 MID(50) (monkey infectious dose 50) of an R5 simian-human immunodeficiency virus (SHIV(SF162P4cy)). Upon challenge, three of four macaques immunized with Tat and EnvΔV2, and two of three monkeys immunized with EnvΔV2 alone were protected from infection. In contrast, all three control animals, which had been either administered with the adjuvants only or left untreated, and an additional monkey immunized with Tat alone became systemically infected. Protection of the macaques vaccinated with EnvΔV2 or Tat/EnvΔV2 correlated with higher peak titers of pre-challenge neutralizing antibodies obtained during the immunization period (between 70 and 3 weeks before challenge) and with anti-Env V3 loop binding antibodies assessed 3 weeks before challenge. Compared to EnvΔV2 alone, the Tat and EnvΔV2 combined vaccine elicited faster antibody responses (IgM) with a trend, early in the vaccination schedule, after the second immunization including EnvΔV2, towards broader anti-Env IgG epitope specificity and a higher ratio of neutralizing to Env-binding antibody titers. As the number of immunizations increased, vaccination with EnvΔV2 approached the immune response assessed after two inocula with the Tat/EnvΔV2 combined vaccine, even though some differences remained between groups, as indicated by anti-Env IgG epitope mapping. In fact, three weeks before challenge, plasma IgG of animals in the EnvΔV2 group showed a trend towards stronger specificity for the V1 loop and V5 loop-C5 regions of Env, whereas the Tat/EnvΔV2 group displayed an overall higher reactivity for epitopes within the Env V3 loop throughout the immunization period. Although differences in terms of protection rate were not found between the EnvΔV2 or Tat/EnvΔV2 vaccination groups in this pilot study, vaccination with Tat/EnvΔV2 appeared to accelerate the induction of potentially protective antibody responses to Env. In particular, antibodies to the Env V3 loop, whose levels at pre-challenge correlated with protection, were already higher early in the vaccination schedule in monkeys immunized with Tat/EnvΔV2 as compared to EnvΔV2 alone. Further studies including larger vaccination groups and fewer immunizations with these two vaccine candidates are needed to confirm these findings and to assess whether the Tat/EnvΔV2 vaccine may afford superior protection against infection.


Journal of Cellular Physiology | 2012

Identity and ranking of colonic mesenchymal stromal cells.

Michele Signore; Anna Maria Cerio; Alessandra Boe; Alfredo Pagliuca; Valentina Zaottini; Ilaria Schiavoni; Giorgio Fedele; S Petti; Simone Navarra; Clara M. Ausiello; Elvira Pelosi; Alessandro Fatica; Antonio Sorrentino; Mauro Valtieri

Although ongoing clinical trials utilize systemic administration of bone‐marrow mesenchymal stromal cells (BM‐MSCs) in Crohns disease (CD), nothing is known about the presence and the function of mesenchymal stromal cells (MSCs) in the normal human bowel. MSCs are bone marrow (BM) multipotent cells supporting hematopoiesis with the potential to differentiate into multiple skeletal phenotypes. A recently identified new marker, CD146, allowing to prospectively isolate MSCs from BM, renders also possible their identification in different tissues. In order to elucidate the presence and functional role of MSCs in human bowel we analyzed normal adult colon sections and isolated MSCs from them. In colon (C) sections, resident MSCs form a net enveloping crypts in lamina propria, coinciding with structural myofibroblasts or interstitial stromal cells. Nine sub‐clonal CD146+ MSC lines were derived and characterized from colon biopsies, in addition to MSC lines from five other human tissues. In spite of a phenotype qualitative identity between the BM‐ and C‐MSC populations, they were discriminated and categorized. Similarities between C‐MSC and BM‐MSCs are represented by: Osteogenic differentiation, hematopoietic supporting activity, immune‐modulation, and surface‐antigen qualitative expression. The differences between these populations are: C‐MSCs mean intensity expression is lower for CD13, CD29, and CD49c surface‐antigens, proliferative rate faster, life‐span shorter, chondrogenic differentiation rare, and adipogenic differentiation completely blocked. Briefly, BM‐MSCs, deserve the rank of progenitors, whereas C‐MSCs belong to the restricted precursor hierarchy. The presence and functional role of MSCs in human colon provide a rationale for BM‐MSC replacement therapy in CD, where resident bowel MSCs might be exhausted or diverted from their physiological functions. J. Cell. Physiol. 227: 3291–3300, 2012.


Microbes and Infection | 2013

Chlamydia pneumoniae modulates human monocyte-derived dendritic cells functions driving the induction of a Type 1/Type 17 inflammatory response.

Davide Flego; Manuela Bianco; Adriano Quattrini; Fabiola Mancini; Maria Carollo; Ilaria Schiavoni; Alessandra Ciervo; Clara M. Ausiello; Giorgio Fedele

Chlamydia pneumoniae is a respiratory pathogen involved in the onset of chronic inflammatory pathologies. Dendritic cells (DC), are major players in spreading of C. pneumoniae from the lungs, a crucial step leading to disseminated infections. Less is known concerning modulation of DC functions consequent to encounter with the bacterium. In order to address this aspect, human monocyte-derived (MD)DC were infected with C. pneumoniae. After internalization bacterial counts increased in MDDC, as well as the expression of CPn1046, a gene involved in bacterial metabolism, with a peak 48 h after the infection. Infected MDDC switched to the mature stage, produced IL-12p70, IL-1β, IL-6, and IL-10, and drove a mixed Type 1/Type 17 polarization. Intracellular pathways triggered by C. pneumoniae involved Toll-like receptor (TLR) 2. Indeed, TLR2 was activated by C. pneumoniae in transfected HEK 293 cells, and C. pneumoniae-mediated phosphorylation of ERK1/2 was inhibited by an anti-TLR2 antibody in MDDC. When an ERK1/2 inhibitor was used, IL-12p70 and IL-10 release by MDDC was reduced and T cell polarization shifted towards a Type 2 profile. Overall, our findings unveiled the role played by TLR2 and ERK1/2 induced by C. pneumoniae to affect DC functions in a way that contributes to a Type 1/Type 17 pro-inflammatory response.


Journal of Leukocyte Biology | 2015

Unconventional, adenosine‐producing suppressor T cells induced by dendritic cells exposed to BPZE1 pertussis vaccine

Giorgio Fedele; Isabella Sanseverino; Krizia D’Agostino; Ilaria Schiavoni; Camille Locht; Alberto L. Horenstein; Fabio Malavasi; Clara M. Ausiello

BPZE1 is a live attenuated pertussis vaccine that successfully completed a phase 1 safety trial. This article describes the induction of unconventional suppressor T cells‐producing ADO by MDDCs exposed to BPZE1 (BPZE1‐DC) through distinct ectoenzymatic pathways that limit the damaging effect of inflammation. BPZE1‐DC induces CD4+ and CD8+ T lymphocytes to express 2 sets of ectoenzymes generating ADO: 1 set is part of the conventional CD39/CD73 pathway, which uses ATP as substrate, whereas the other is part of the CD38/CD203a/CD73 pathway and metabolizes NAD+. The contribution of the ADO‐generating ectoenzymes in the regulatory response was shown by: 1) selective inhibition of the enzymatic activities of CD39, CD73, and CD38; 2) the ability of suppressor T cells to convert exogenously added ATP and NAD+ to ADO; and 3) a positive correlation between ectoenzyme expression, ADO levels, and suppression abilities. Thus, T lymphocytes activated by BPZE1‐DC shift to a suppressor stage, through the expression of ectoenzyme networks, and are able to convert extracellular nucleotides into ADO, which may explain the potent anti‐inflammatory properties of BPZE1 observed in several murine models.


Human Gene Therapy | 2002

Inducible Expression of the ΔNGFr/F12Nef Fusion Protein as a New Tool for Anti-Human Immunodeficiency Virus Type 1 Gene Therapy

Claudia Muratori; Ilaria Schiavoni; Gianna Melucci-Vigo; Eleonora Olivetta; Anna Claudia Santarcangelo; Katherina Pugliese; Paola Verani; Maurizio Federico

Expression of the human immunodeficiency virus type 1 (HIV-1) Nef triple mutant F12Nef strongly inhibits HIV-1 replication. We exploited such a unique feature in a novel anti-HIV-1 gene therapy design by constructing an HIV-1 Tat-defective lentivirus vector expressing the product of fusion between the low-affinity human nerve growth factor receptor truncated in its intracytoplasmic domain (deltaNGFr, NH(2) moiety), and F12Nef (COOH moiety), under the control of the HIV-1 long terminal repeats. In this manner, both the selection marker (deltaNGFr) and the anti-HIV-1 effector are comprised in the same fusion protein, the expression of which is targetable by HIV-1 infection. Such a vector was proved to transduce human cells efficiently and, on HIV-1 infection, it expressed high levels of the fusion protein. In addition, strong antiviral activity of the deltaNGFr/F12Nef-expressing vector was demonstrated in cell lines as well as in primary cell cultures challenged with T- or M-tropic HIV-1 isolates. Thus, the HIV-1-targetable expression of the deltaNGFr/F12Nef fusion protein represents a novel and powerful tool for an effective anti-HIV-1 gene therapy strategy.


PLOS ONE | 2014

Live Attenuated B. pertussis BPZE1 Rescues the Immune Functions of Respiratory Syncytial Virus Infected Human Dendritic Cells by Promoting Th1/Th17 Responses

Ilaria Schiavoni; Giorgio Fedele; Adriano Quattrini; Manuela Bianco; Corinna Schnoeller; Peter J. M. Openshaw; Camille Locht; Clara M. Ausiello

Respiratory Syncytial virus (RSV) is the leading cause of acute lower respiratory tract viral infection in young children and a major cause of winter hospitalization. Bordetella pertussis is a common cause of bacterial lung disease, affecting a similar age group. Although vaccines are available for B. pertussis infection, disease rates have recently increased in many countries. We have therefore developed a novel live attenuated B. pertussis strain (BPZE1), which has recently undergone a successful clinical phase I trial. In mice, BPZE1 provides protection against disease caused by respiratory viral challenge. Here, we analyze the effect of BPZE1 on antiviral T cell responses induced by human monocyte-derived dendritic cells (MDDC). We found that BPZE1 influences antiviral immune responses at several levels, enhancing MDDC maturation, IL-12p70 production, and shifting T cell cytokine profile towards a Th1/Th17 pattern. These data were supported by the intracellular signaling analysis. RSV infection of MDDC caused MyD88-independent STAT1 phosphorylation, whereas BPZE1 activated MyD88-dependent signaling pathways; co-infection caused both pathways to be activated. These findings suggest that BPZE1 given during infancy might improve the course and outcome of viral lung disease in addition to providing specific protection against B. pertussis infection.


Toxins | 2017

Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: A subversive move to fool host immunity

Giorgio Fedele; Ilaria Schiavoni; Irena Adkins; Nela Klimova; Peter Sebo

Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

Collaboration


Dive into the Ilaria Schiavoni's collaboration.

Top Co-Authors

Avatar

Giorgio Fedele

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Maurizio Federico

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Clara M. Ausiello

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Pasqualina Leone

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurelio Cafaro

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Eleonora Olivetta

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge