Ilda Patrícia Ribeiro
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilda Patrícia Ribeiro.
Tumor Biology | 2014
Rosário Pinto-Leite; Isabel M. Carreira; Joana B. Melo; Susana Isabel Ferreira; Ilda Patrícia Ribeiro; Jaqueline Ferreira; Marco Filipe; Carina Bernardo; Regina Arantes-Rodrigues; Paula A. Oliveira; Lúcio Lara Santos
Several genomic regions are frequently altered and associated with the type, stage and progression of urinary bladder cancer (UBC). We present the characterization of 5637, T24 and HT1376 UBC cell lines by karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) analysis. Some cytogenetic anomalies present in UBC were found in the three cell lines, such as chromosome 20 aneuploidy and the loss of 9p21. Some gene loci losses (e.g. CDKN2A) and gains (e.g. HRAS, BCL2L1 and PTPN1) were coincident across all cell lines. Although some significant heterogeneity and complexity were detected between them, their genomic profiles exhibited a similar pattern to UBC. We suggest that 5637 and HT1376 represent the E2F3/RB1 pathway due to amplification of 6p22.3, concomitant with loss of one copy of RB1 and mutation of the remaining copy. The HT1376 presented a 10q deletion involving PTEN region and no alteration of PIK3CA region which, in combination with the inactivation of TP53, bears more invasive and metastatic properties than 5637. The T24 belongs to the alternative pathway of FGFR3/CCND1 by presenting mutated HRAS and over-represented CCND1. These cell lines cover the more frequent subtypes of UBC and are reliable models that can be used, as a group, in preclinical studies.
American Journal of Physical Medicine & Rehabilitation | 2013
Fernando Ribeiro; Ilda Patrícia Ribeiro; Alberto Jorge Alves; do Céu Monteiro M; Nórton L. Oliveira; José Oliveira; Francisco Amado; Fernando Remião; José Alberto Duarte
ABSTRACTThis review aimed to examine the effects of exercise training on mobilization of endothelial progenitor cells (EPCs) in patients with cardiovascular disease and to discuss the possible mechanisms involved in the process. A computer-aided search on PubMed and PEDro was conducted to identify relevant studies published up to June 2012. Two reviewers independently selected studies for inclusion and extracted data, namely, quantitative assessment of circulating EPCs. Of the 88 identified studies, 13 met the inclusion criteria. The 13 studies enrolled 648 participants, including patients with chronic heart failure, peripheral artery disease, and coronary artery disease. The exercise characteristics varied largely across the studies: exercise duration ranged from 2 wks to 6 mos, session duration ranged from 20 to 60 mins, and exercise intensity was usually calculated using the maximal heart rate (ranging from 75% to 85%) or the peak/maximum oxygen consumption (60%–70%). All studies used aerobic exercise. The great majority of the 13 studies reported significant effects of different exercise regimens on the number of circulating EPCs. In summary, exercise training seems to increase the number of circulating EPCs, which could contribute to vascular regeneration and angiogenesis. These positive effects of chronic exercise seem to be closely related to the bioavailability of nitric oxide, including increased activity of endothelial nitric oxide synthase and antioxidant enzymes, and activation of matrix metalloproteinase 9.
Cellular Oncology | 2014
Ilda Patrícia Ribeiro; Francisco Batel Marques; Francisco Caramelo; João Pereira; Miguel Patrício; Hugo Prazeres; José Ferrão; Maria José Julião; Miguel Castelo-Branco; Joana B. Melo; Isabel Poiares Baptista; Isabel M. Carreira
PurposeThe identification of genetic markers associated with oral cancer is considered essential to improve the diagnosis, prognosis, early tumor and relapse detection and, ultimately, to delineate individualized therapeutic approaches. Here, we aimed at identifying such markers.MethodsMultiplex Ligation-dependent Probe Amplification (MLPA) analyses encompassing 133 cancer-related genes were performed on a panel of primary oral tumor samples and its corresponding resection margins (macroscopically tumor-free tissue) allowing, in both types of tissue, the detection of a wide arrange of copy number imbalances on various human chromosomes.ResultsWe found that in tumor tissue, from the 133 cancer-related genes included in this study, those that most frequently exhibited copy number gains were located on chromosomal arms 3q, 6p, 8q, 11q, 16p, 16q, 17p, 17q and 19q, whereas those most frequently exhibiting copy number losses were located on chromosomal arms 2q, 3p, 4q, 5q, 8p, 9p, 11q and 18q. Several imbalances were highlighted, i.e., losses of ERBB4, CTNNB1, NFKB1, IL2, IL12B, TUSC3, CDKN2A, CASP1, and gains of MME, BCL6, VEGF, PTK2, PTP4A3, RNF139, CCND1, FGF3, CTTN, MVP, CDH1, BRCA1, CDKN2D, BAX, as well as exon 4 of TP53. Comparisons between tumor and matched macroscopically tumor-free tissues allowed us to build a logistic regression model to predict the tissue type (benign versus malignant). In this model, the TUSC3 gene showed statistical significance, indicating that loss of this gene may serve as a good indicator of malignancy.ConclusionsOur results point towards relevance of the above mentioned cancer-related genes as putative genetic markers for oral cancer. For practical clinical purposes, these genetic markers should be validated in additional studies.
Tumor Biology | 2014
Ilda Patrícia Ribeiro; Francisco Batel Marques; Francisco Caramelo; José Ferrão; Hugo Prazeres; Maria José Julião; Widad Rifi; Suvi Savola; Joana B. Melo; Isabel Poiares Baptista; Isabel M. Carreira
Oral tumors are a growing health problem worldwide; thus, it is mandatory to establish genetic markers in order to improve diagnosis and early detection of tumors, control relapses and, ultimately, delineate individualized therapies. This study was the first to evaluate and discuss the clinical applicability of a multiplex ligation-dependent probe amplification (MLPA) probe panel directed to head and neck cancer. Thirty primary oral squamous cell tumors were analyzed using the P428 MLPA probe panel. We detected genetic imbalances in 26 patients and observed a consistent pattern of distribution of genetic alterations in terms of losses and gains for some chromosomes, particularly for chromosomes 3, 8, and 11. Regarding the latter, some specific genes were highlighted due to frequent losses of genetic material—RARB, FHIT, CSMD1, GATA4, and MTUS1—and others due to gains—MCCC1, MYC, WISP1, PTK2, CCND1, FGF4, FADD, and CTTN. We also verified that the gains of MYC and WISP1 genes seem to suggest higher propensity of tumors localized in the floor of the mouth. This study proved the value of this MLPA probe panel for a first-tier analysis of oral tumors. The probemix was developed to include target regions that have been already shown to be of diagnostic/prognostic relevance for oral tumors. Furthermore, this study emphasized several of those specific genetic targets, suggesting its importance to oral tumor development, to predict patients’ outcomes, and also to guide the development of novel molecular therapies.
Cellular Oncology | 2016
Ilda Patrícia Ribeiro; Francisco Caramelo; Francisco Batel Marques; Ana Domingues; Margarida Mesquita; Leonor Barroso; Hugo Prazeres; Maria José Julião; Isabel Poiares Baptista; Artur Ferreira; Joana B. Melo; Isabel M. Carreira
PurposeOral squamous cell carcinoma (OSCC) is a frequently occurring aggressive malignancy with a heterogeneous clinical behavior. Based on the paucity of specific early diagnostic and prognostic biomarkers, which hampers the appropriate treatment and, ultimately the development of novel targeted therapies, we aimed at identifying such biomarkers through a genetic and epigenetic analysis of these tumors.Methods93 primary OSCCs were subjected to DNA copy number alteration (CNA) and methylation status analyses using methylation-specific multiplex ligation-dependent probe amplification (MS-MPLA). The genetic and epigenetic OSCC profiles obtained were associated with the patients’ clinic-pathological features.ResultsWe found that WT1 gene promoter methylation is a predictor of a better prognosis and that MSH6 and GATA5 gene promoter methylation serve as predictors of a worse prognosis. GATA5 gene promoter methylation was found to be significantly associated with a shorter survival rate. In addition, we found that PAX5 gene promoter methylation was significantly associated with tongue tumors. To the best of our knowledge, this is the first study that highlights this specific set of genes as epigenetic diagnostic and prognostic biomarkers in OSCC.ConclusionsOur data highlight the importance of epigenetically assessing OSCCs to identify key genes that may serve as diagnostic and prognostic biomarkers and, potentially, as candidate therapeutic targets.
Molecular Cytogenetics | 2016
Ilda Patrícia Ribeiro; Leonor Barroso; Francisco Batel Marques; Joana B. Melo; Isabel M. Carreira
BackgroundOral cancer is one of the most common malignant lesions of the head and neck. This cancer is an aggressive and lethal disease with no significant improvements in the overall survival in the last decades. Moreover, the incidence of oral HPV-positive tumors is rising, especially in young people. This oral neoplasm develops through numerous molecular imbalances that affect key genes and signaling pathways; however, the molecular mechanisms involved in the pathogenesis and progression of oral tumors are still to be fully determined. In order to improve the quality of life and long-term survival rate of these patients, it is vital to establish accurate biomarkers that help in the early diagnosis, prognosis and development of target treatments. Such biomarkers may possibly allow for selection of patients that will benefit from each therapy modality, helping in the optimization of intensity and sequence of the treatments in order to decrease side effects and improve survival.ConclusionIn this review we discuss the current knowledge of oral cancer and the potential role of omics approaches to identify molecular biomarkers in the improvement of early diagnosis, treatment and prognosis. The pursuit to improve the quality of life and decrease mortality rates of the oral patients needs to be centralized on the identification of critical genes in oral carcinogenesis. Understanding the molecular biology of oral cancer is vital for search new therapies, being the molecular-targeted therapies the most promising treatment for these patients.
Scientific Reports | 2017
Ilda Patrícia Ribeiro; Francisco Caramelo; Luísa Esteves; Joana Menoita; Francisco C. Marques; Leonor Barroso; Jorge Miguéis; Joana B. Melo; Isabel M. Carreira
The head and neck squamous cell carcinoma (HNSCC) population consists mainly of high-risk for recurrence and locally advanced stage patients. Increased knowledge of the HNSCC genomic profile can improve early diagnosis and treatment outcomes. The development of models to identify consistent genomic patterns that distinguish HNSCC patients that will recur and/or develop metastasis after treatment is of utmost importance to decrease mortality and improve survival rates. In this study, we used array comparative genomic hybridization data from HNSCC patients to implement a robust model to predict HNSCC recurrence/metastasis. This predictive model showed a good accuracy (>80%) and was validated in an independent population from TCGA data portal. This predictive genomic model comprises chromosomal regions from 5p, 6p, 8p, 9p, 11q, 12q, 15q and 17p, where several upstream and downstream members of signaling pathways that lead to an increase in cell proliferation and invasion are mapped. The introduction of genomic predictive models in clinical practice might contribute to a more individualized clinical management of the HNSCC patients, reducing recurrences and improving patients’ quality of life. The power of this genomic model to predict the recurrence and metastases development should be evaluated in other HNSCC populations.
Scientific Reports | 2017
Fernando Ribeiro; Ilda Patrícia Ribeiro; Ana Cristina Gonçalves; Alberto Jorge Alves; Elsa Melo; Raquel Fernandes; Rui Costa; Ana Bela Sarmento-Ribeiro; José Alberto Duarte; Isabel M. Carreira; Sarah Witkowski; José Oliveira
This study aimed to determine the effect of a single bout of resistance exercise at different intensities on the mobilization of circulating EPCs over 24 hours in women. In addition, the angiogenic factors stromal cell-derived factor 1 (SDF-1α), vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1-alpha (HIF-1α) and erythropoietin (EPO) were measured as potential mechanisms for exercise-induced EPCs mobilization. Thirty-eight women performed a resistance exercise session at an intensity of 60% (n = 13), 70% (n = 12) or 80% (n = 13) of one repetition maximum. Each session was comprised of three sets of 12 repetitions of four exercises: bench press, dumbbell curl, dumbbell squat, and standing dumbbell upright row. Blood was sampled at baseline and immediately, 6 hours, and 24 hours post-exercise. Circulating EPC and levels of VEGF, HIF-1α and EPO were significantly higher after exercise (P < 0.05). The change in EPCs from baseline was greatest in the 80% group (P < 0.05), reaching the highest at 6 hours post-exercise. The change in EPCs from baseline to 6 hours post-exercise was correlated with the change in VEGF (r = 0.492, P = 0.002) and HIF-1α (r = 0.388, P = 0.016). In general, a dose-response relationship was observed, with the highest exercise intensities promoting the highest increases in EPCs and angiogenic factors.
Journal of Oral Science | 2018
Ilda Patrícia Ribeiro; Joana Rodrigues; Alexandra Mascarenhas; Nadezda Kosyakova; Francisco Caramelo; Thomas Liehr; Joana B. Melo; Isabel M. Carreira
Oral carcinoma develops from squamous epithelial cells by the acquisition of multiple (epi) genetic alterations that target different genes and molecular pathways. Herein, we performed a comprehensive genomic and epigenetic characterization of the HSC-3 cell line through karyotyping, multicolor fluorescence in situ hybridization, array comparative genomic hybridization, and methylation-specific multiplex ligation-dependent probe amplification. HSC-3 turned out to be a near-triploid cell line with a modal number of 61 chromosomes. Banding and molecular cytogenetic analyses revealed that nonrandom gains of chromosomal segments occurred more frequently than losses. Overall, gains of chromosome 1, 3q, 5p, 7p, 8q, 9q, 10, 11p, 11q13, 12, 13, 14, 17, 18p, 20, Yp, and Xq were observed. The largest region affected by copy number loss was observed at chromosome 18q. Several of the observed genomic imbalances and their mapped genes were already associated with oral carcinoma and/or adverse prognosis, invasion, and metastasis in cancer. The most common rearrangements observed were translocations in the centromeric/near-centromeric regions. RARB, ESR1, and CADM1 genes were methylated and showed copy number losses, whereas TP73 and GATA5 presented with methylation and copy number gains. Thus, the current study presents a comprehensive characterization of the HSC-3 cell line; the use of this cell line may contribute to enriching the resources available for oral cancer research, especially for the testing of therapeutic agents.
Molecular Medicine Reports | 2017
Ilda Patrícia Ribeiro; Francisco Batel Marques; Leonor Barroso; Joana Rodrigues; Francisco Caramelo; Joana B. Melo; Isabel M. Carreira
Oral leukoplakia and erythroleukoplakia are common oral potentially malignant disorders diagnosed in the oral cavity. The specific outcome of these lesions remains to be elucidated, as their malignant transformation rate exhibits great variation. The ability to predict which of those potentially malignant lesions are likely to progress to cancer would be vital to guide their future clinical management. The present study reported two patients with tongue squamous cell carcinoma: Case study 1 was diagnosed with a simultaneous leukoplakia and case study 2 developed an erythroleukoplakia following the primary tumor treatment. Whole genome copy number alterations were analyzed using array comparative genomic hybridization. The present study determined more genomic imbalances in the tissues from leukoplakia and erythroleukoplakia compared with their respective tumors. The present study also identified in tumor and potentially malignant lesions common alterations of chromosomal regions and genes, including FBXL5, UGT2B15, UGT2B28, KANSL1, GSTT1 and DUSP22, being some of these typical aberrations described in oral cancer and others are linked to chemoradioresistance. Several putative genes associated with hallmarks of malignancy that may have an important role in predicting the progression of leukoplakia and erythroleukoplakia to squamous cell carcinoma, namely gains in BNIPL, MCL1, STAG2, CSPP1 and ZNRF3 genes were also identified.