Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ildo Nicoletti is active.

Publication


Featured researches published by Ildo Nicoletti.


Journal of Immunological Methods | 1991

A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry

Ildo Nicoletti; Graziella Migliorati; M. C. Pagliacci; Fausto Grignani; Carlo Riccardi

Corticosteroids, calcium ionophores and anti-CD3 monoclonal antibodies kill mouse thymocytes incubated in vitro. Cell death is preceded by extensive DNA fragmentation into oligonucleosomal subunits. This type of cell death (apoptosis), which physiologically occurs in the intrathymic process of immune cell selection, is usually evaluated by either electrophoretic or colorimetric methods which measure DNA fragmentation in the nuclear extracts. These techniques are unable to determine the percentage of apoptotic nuclei or recognize the apoptotic cells in a heterogeneous cell population. We have developed a flow cytometric method for measuring the percentage of apoptotic nuclei after propidium iodide staining in hypotonic buffer and have compared it with the classical colorimetric and electrophoretic techniques using dexamethasone (DEX)-treated mouse thymocytes. Apoptotic nuclei appeared as a broad hypodiploid DNA peak which was easily discriminable from the narrow peak of thymocytes with normal (diploid) DNA content in the red fluorescence channels. When the DEX-induced apoptosis was inhibited by either low-temperature (4 degrees C) incubation or cycloheximide treatment, no hypodiploid DNA peak appeared. Similarly, thymocyte death induced by sodium azide, a substance with cell-killing activity through non-apoptotic mechanisms, did not result in any variation in the normal DNA peak. The flow cytometric data showed an excellent correlation with the results obtained with both electrophoretic and colorimetric methods. This new rapid, simple and reproducible method should prove useful for assessing apoptosis of specific cell populations in heterogeneous tissues such as bone marrow, thymus and lymph nodes.


Cell | 1992

A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction.

Giuliana Pelicci; Luisa Lanfrancone; Francesco Grignani; Jane McGlade; Federica Cavallo; Guido Forni; Ildo Nicoletti; Fausto Grignani; Tony Pawson; Pier Giuseppe Pelicci

A new SH2-containing sequence, SHC, was isolated by screening cDNA libraries with SH2 representative DNA probes. The SHC cDNA is predicted to encode overlapping proteins of 46.8 and 51.7 kd that contain a single C-terminal SH2 domain, and an adjacent glycine/proline-rich motif with regions of homology with the alpha 1 chain of collagen, but no identifiable catalytic domain. Anti-SHC antibodies recognized three proteins of 46, 52, and 66 kd in a wide range of mammalian cell lines. These SHC proteins complexed with and were phosphorylated by activated epidermal growth factor receptor. The physical association of SHC proteins with activated receptors was recreated in vitro by using a bacterially expressed SHC SH2 domain. NIH 3T3 mouse fibroblasts that constitutively overexpressed SHC acquired a transformed phenotype in culture and formed tumors in nude mice. These results suggest that the SHC gene products couple activated growth factor receptors to a signaling pathway that regulates the proliferation of mammalian cells.


Nature Protocols | 2006

Analysis of apoptosis by propidium iodide staining and flow cytometry

Carlo Riccardi; Ildo Nicoletti

Since its introduction, the propidium iodide (PI) flow cytometric assay has been widely used for the evaluation of apoptosis in different experimental models. It is based on the principle that apoptotic cells, among other typical features, are characterized by DNA fragmentation and, consequently, loss of nuclear DNA content. Use of a fluorochrome, such as PI, that is capable of binding and labeling DNA makes it possible to obtain a rapid (the protocol can be completed in about 2 h) and precise evaluation of cellular DNA content by flow cytometric analysis, and subsequent identification of hypodiploid cells. The original protocol enhanced the capacity for a rapid, quantitative measure of cell apoptosis. For this reason, since its publication, the PI assay has been widely used, as demonstrated by the large number of citations of the original paper and/or the continuous use of the method in many laboratories.


Cell | 1993

The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells

Francesco Grignani; Pier Francesco Ferrucci; Ugo Testa; Giampaolo Talamo; Marta Fagioli; Myriam Alcalay; Amedea Mencarelli; Fausto Grignani; Cesare Peschle; Ildo Nicoletti; Pier Giuseppe Pelicci

Acute promyelocytic leukemia is a clonal expansion of hematopoietic precursors blocked at the promyelocytic stage. The differentiation block can be reversed by retinoic acid, which induces blast maturation both in vitro and in vivo. Acute promyelocytic leukemia is characterized by a 15;17 chromosome translocation with breakpoints within the retinoic acid alpha receptor (RAR alpha) gene on 17 and the PML gene, which encodes a putative transcription factor, on 15. A PML-RAR alpha fusion protein is formed as a consequence of the translocation. We expressed the PML-RAR alpha protein in U937 myeloid precursor cells and showed that they lost the capacity to differentiate under the action of different stimuli (vitamin D3 and transforming growth factor beta 1), acquired enhanced sensitivity to retinoic acid, and exhibited a higher growth rate consequent to diminished apoptotic cell death. These results provide evidence of biological activity of PML-RAR alpha and recapitulate critical features of the promyelocytic leukemia phenotype.


Leukemia Research | 1994

The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells

Fabrizio Spinozzi; M.Cristina Pagliacci; Graziella Migliorati; Rosalba Moraca; Fausto Grignani; Carlo Riccardi; Ildo Nicoletti

Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinases. We analyzed the effects of genistein on in vitro growth, cell-cycle progression and chromatin structure of Jurkat cells, a T-cell leukemia line with a constitutively increased tyrosine phosphorylation pattern. Exposure of in vitro cultured Jurkat cells to genistein resulted in a dose-dependent, growth inhibition. Cell-cycle analysis of genistein-treated cells revealed a G2/M arrest at low genistein concentrations (5-10 micrograms/ml), while at higher doses (20-30 micrograms/ml) there was also a perturbation in S-phase progression. The derangements in cell-cycle control were followed by apoptotic death of genistein-treated cells. Immunocytochemical analysis of cells stained with a FITC-conjugated anti-phosphotyrosine monoclonal antibody showed that 30 micrograms/ml genistein effectively inhibit tyrosine kinase activity in cultured Jurkat cells. Our results indicate that the natural isoflavone genistein antagonizes tumor cell growth through both cell-cycle arrest and induction of apoptosis and suggest that it could be a promising new agent in cancer therapy.


Journal of Experimental Medicine | 2005

Human CD1-restricted T cell recognition of lipids from pollens

Elisabetta Agea; Anna Russano; Onelia Bistoni; Roberta Mannucci; Ildo Nicoletti; Lanfranco Corazzi; Anthony D. Postle; Gennaro De Libero; Steven A. Porcelli; Fabrizio Spinozzi

Plant pollens are an important source of environmental antigens that stimulate allergic responses. In addition to acting as vehicles for foreign protein antigens, they contain lipids that incorporate saturated and unsaturated fatty acids, which are necessary in the reproduction of higher plants. The CD1 family of nonpolymorphic major histocompatibility complex–related molecules is highly conserved in mammals, and has been shown to present microbial and self lipids to T cells. Here, we provide evidence that pollen lipids may be recognized as antigens by human T cells through a CD1-dependent pathway. Among phospholipids extracted from cypress grains, phosphatidyl-choline and phosphatidyl-ethanolamine were able to stimulate the proliferation of T cells from cypress-sensitive subjects. Recognition of phospholipids involved multiple cell types, mostly CD4+ T cell receptor for antigen (TCR)αβ+, some CD4−CD8− TCRγδ+, but rarely Vα24i + natural killer–T cells, and required CD1a+ and CD1d+ antigen presenting cell. The responding T cells secreted both interleukin (IL)-4 and interferon-γ, in some cases IL-10 and transforming growth factor-β, and could provide help for immunoglobulin E (IgE) production. Responses to pollen phospholipids were maximally evident in blood samples obtained from allergic subjects during pollinating season, uniformly absent in Mycobacterium tuberculosis–exposed health care workers, but occasionally seen in nonallergic subjects. Finally, allergic, but not normal subjects, displayed circulating specific IgE and cutaneous weal and flare reactions to phospholipids.


Leukemia | 2009

Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications

Brunangelo Falini; N Bolli; Arcangelo Liso; M P Martelli; Roberta Mannucci; Stefano Pileri; Ildo Nicoletti

Nucleophosmin (NPM1) is a highly conserved nucleo-cytoplasmic shuttling protein that shows a restricted nucleolar localization. Mutations of NPM1 gene leading to aberrant cytoplasmic dislocation of nucleophosmin (NPMc+) occurs in about one third of acute myeloid leukaemia (AML) patients that exhibit distinctive biological and clinical features. We discuss the latest advances in the molecular basis of nucleophosmin traffic under physiological conditions, describe the molecular abnormalities underlying altered transport of nucleophosmin in NPM1-mutated AML and present evidences supporting the view that cytoplasmic nucleophosmin is a critical event for leukaemogenesis. We then outline how a highly specific immunohistochemical assay can be exploited to diagnose NPM1-mutated AML and myeloid sarcoma in paraffin-embedded samples by looking at aberrant nucleophosmin accumulation in cytoplasm of leukaemic cells. This procedure is also suitable for detection of haemopoietic multilineage involvement in bone marrow trephines. Moreover, use of immunohistochemistry as surrogate for molecular analysis can serve as first-line screening in AML and should facilitate implementation of the 2008 World Health Organization classification of myeloid neoplasms that now incorporates AML with mutated NPM1 (synonym: NPMc+ AML) as a new provisional entity. Finally, we discuss the future therapeutic perspectives aimed at reversing the altered nucleophosmin transport in AML with mutated NPM1.


European Journal of Cancer | 1993

Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: A further pitfall in the use of the MTT assay for evaluating cell growth and survival

M. C. Pagliacci; F. Spinozzi; Graziella Migliorati; G. Fumi; M. Smacchia; Francesco Grignani; Carlo Riccardi; Ildo Nicoletti

The natural isoflavone genistein inhibits the growth of a number of tumour cell lines in vitro. During investigations on the antiproliferative effects of genistein we observed that, with respect to direct cell counting, a tetrazolium (MTT) colorimetric assay consistently underestimated the growth inhibitory activity of the substance. Cell proliferation was markedly inhibited by genistein in three tumour cell lines (MCF-7, human breast tumour; Jurkat cells, human T-cell leukaemia; L-929, mouse transformed fibroblasts) when cell number was evaluated by direct counting, whereas a 72-h MTT assay failed to reveal any growth-inhibitory effect. Cell cycle analysis by propidium iodide staining and flow-cytometry revealed a G2/M cell cycle arrest after genistein treatment. Genistein-treated cells displayed an increase in cell volume and in mitochondrial number and/or activity, as revealed by enhanced formazan generation and increased uptake of the vital mitochondrial dye rhodamine 123. These results suggest that alterations in cell cycle phase redistribution of tumour cells by genistein may significantly influence mitochondrial number and/or function and, consequently, MTT reduction to formazan. This may constitute an important bias in analysing the effects of genistein, and possibly other drugs that block the G2/M transition, on growth and viability of cancer cells in vitro by MTT assay.


Leukemia | 2005

Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin

Hilmar Quentmeier; M P Martelli; Wilhelm G. Dirks; Niccolo Bolli; Arcangelo Liso; Roderick A. F. MacLeod; Ildo Nicoletti; Roberta Mannucci; Alessandra Pucciarini; Barbara Bigerna; M F Martelli; Cristina Mecucci; Hans G. Drexler; Brunangelo Falini

We recently identified a new acute myeloid leukemia (AML) subtype characterized by mutations at exon-12 of the nucleophosmin (NPM) gene and aberrant cytoplasmic expression of NPM protein (NPMc+). NPMc+ AML accounts for about 35% of adult AML and it is associated with normal karyotype, wide morphological spectrum, CD34-negativity, high frequency of FLT3-ITD mutations and good response to induction therapy. In an attempt to identify a human cell line to serve as a model for the in vitro study of NPMc+ AML, we screened 79 myeloid cell lines for mutations at exon-12 of NPM. One of these cell lines, OCI/AML3, showed a TCTG duplication at exon-12 of NPM. This mutation corresponds to the type A, the NPM mutation most frequently observed in primary NPMc+ AML. OCI/AML3 cells also displayed typical phenotypic features of NPMc+ AML, that is, expression of macrophage markers and lack of CD34, and the immunocytochemical hallmark of this leukemia subtype, that is, the aberrant cytoplasmic expression of NPM. The OCI/AML3 cell line easily engrafts in NOD/SCID mice and maintains in the animals the typical features of NPMc+ AML, such as the NPM cytoplasmic expression. For all these reasons, the OCI/AML3 cell line represents a remarkable tool for biomolecular studies of NPMc+ AML.


The EMBO Journal | 1996

Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains.

Francesco Grignani; Ugo Testa; Daniela Rogaia; P F Ferrucci; P Samoggia; A Pinto; D Aldinucci; Vania Gelmetti; Marta Fagioli; Myriam Alcalay; J Seeler; Ildo Nicoletti; Cesare Peschle; Pier Giuseppe Pelicci

The block of terminal differentiation is a prominent feature of acute promyelocytic leukemia (APL) and its release by retinoic acid correlates with disease remission. Expression of the APL‐specific PML/RARalpha fusion protein in hematopoietic precursor cell lines blocks terminal differentiation, suggesting that PML/ RARalpha may have the same activity in APL blasts. We expressed different PML/RARalpha mutants in U937 and TF‐1 cells and demonstrated that the integrity of the PML protein dimerization and RARalpha DNA binding domains is crucial for the differentiation block induced by PML/RARalpha, and that these domains exert their functions only within the context of the fusion protein. Analysis of the in vivo dimerization and cell localization properties of the PML/RARalpha mutants revealed that PML/RARalpha–PML and PML/RARalpha–RXR heterodimers are not necessary for PML/RARalpha activity on differentiation. We propose that a crucial mechanism underlying PML/RARalpha oncogenic activity is the deregulation of a transcription factor, RARalpha, through its fusion with the dimerization interface of another nuclear protein, PML.

Collaboration


Dive into the Ildo Nicoletti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pier Giuseppe Pelicci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge