Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilhan Dogan is active.

Publication


Featured researches published by Ilhan Dogan.


Journal of Plant Nutrition | 2014

INFLUENCE OF ALUMINUM ON MINERAL NUTRIENT UPTAKE AND ACCUMULATION IN URTICA PILULIFERA L.

Ilhan Dogan; Ibrahim Ilker Ozyigit; Goksel Demir

Pollutants can have detrimental effects on living organisms. They can cause toxicity, damaging cells, tissues and organs because of their high concentrations or activities. Plants provide a useful system for screening and monitoring environmental pollutants. Among pollutants, aluminum is considered as a primary growth limiting factor for plants resulting in decreased plant growth and development. Although considered to be a non-essential and highly toxic metal ion for growth and development, aluminum (Al) is easily absorbed by plants. Urticaceae family members have high nutrient requirements demonstrated by leaves containing high levels of calcium (Ca), iron (Fe), magnesium (Mg), and nitrogen (N). Urtica pilulifera is one of the important traditional medicinal plants in Turkey. In this study, U. pilulifera was used as a bioindicator to investigate the possible differences in the absorption and accumulation of mineral nutrients at different levels of the Al exposure and examine the mineral nutrition composition of U. pilulifera under Al stress. Also, some growth parameters (leaf-stem fresh and dry weights, root dry weights, stem lengths and leaf surface area) were investigated. U. pilulifera seedlings were grown for two months in growth-room conditions and watered with spiked Hoagland solution, which contained 0, 100, and 200 μM aluminium chloride (AlCl3). It was observed that macro- and micro-nutritional status of roots and leaves was altered by Al exposure. The concentrations of some macro- and micronutrients were reduced while concentrations of others were increased by excess of Al. Some macro- and micronutrients were increased at low level of Al whereas reductions were observed at high level of Al, and vice versa. The patterns were dependent on the macro- or micronutrient and the plant part.


Biotechnology & Biotechnological Equipment | 2016

Assessment of Cd-induced genotoxic damage in Urtica pilulifera L. using RAPD-PCR analysis

Ilhan Dogan; Ibrahim Ilker Ozyigit; Guzin Tombuloglu; Mehmet Serdal Sakcali; Huseyin Tombuloglu

ABSTRACT Plants can be used as biological indicators in assessing the damage done by bioaccumulation of heavy metals and their negative impact on the environment. In the present research, Roman nettle (Urtica pilulifera L.) was employed as a bioindicator for cadmium (Cd) pollution. The comparisons between unexposed and exposed plant samples revealed inhibition of the root growth (∼25.96% and ∼45.92% after treatment with 100 and 200 µmol/L Cd concentrations, respectively), reduction in the total soluble protein quantities (∼53.92% and ∼66.29% after treatment with 100 and 200 µmol/L Cd concentrations, respectively) and a gradual genomic instability when the Cd concentrations were increased. The results indicated that alterations in randomly amplified polymorphic DNA (RAPD) profiles, following the Cd treatments, included normal band losses and emergence of new bands, when compared to the controls. Also, the obtained data from F1 plants, utilized for analysis of genotoxicity, revealed that DNA alterations, occurring in parent plants due to Cd pollution, were transmitted to the next generation.


Archive | 2013

Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops

Ibrahim Ilker Ozyigit; Ilhan Dogan; Ebru Artam Tarhan

The history of Agrobacterium-related plant biotechnology goes back for more than three decades with the discovery of molecular mechanisms of crown gall disease in plants. After 1980s, gene technologies began developing rapidly and today, related with the improved gene transfer methods, plant biotechnology has become one of the most important branches in science. Till now, the most important genes related with agricultural affairs have been utilized for cloning of plants with the deployment of different techniques used in genetic engineering. Especially, Agrobacterium tumefaciens was used extensively for transferring desired genetic materials to plants rapidly and effectively by the researchers to create transgenic plants. Recognition of the biology of Agrobacterium species and newly developed applications of their T-DNA systems has been a great step in plant biotechnology. This chapter provides the reader with extensive information on A. rhizogenes which is responsible for the development of hairy root disease in a wide range of dicotyledonous plants and its T-DNA system. This knowledge will be useful in improving utilization of crops and the formulation of new and up-graded transgenic based food products.


Soil Remediation and Plants#R##N#Prospects and Challenges | 2015

Plant–Microbe Interactions in Phytoremediation

Ibrahim Ilker Ozyigit; Ilhan Dogan

Our atmosphere, water resources and soil are becoming increasingly contaminated with inorganic and organic compounds as a result of anthropogenic-driven inputs, mainly from industry, mining, motorized traffic, agriculture, logging and military actions. Alleviation and prevention of environmental pollution can be achieved by utilization of plants and their associated microbes. Recent advances in plant–microbe interaction research revealed that plants are able to shape their rhizosphere microbiome through active secretion of substrates that are known to vary between plant species. Soil-borne microorganisms such as actinobacteria, algae, protozoa and different types of bacteria having different capabilities of functional activities can vary extensively in soils and occur in associations in the rhizosphere of plants. Microbial associations are known to affect mobility and availability of substances to the plant through the release of chelating agents, acidification, phosphate solubilization and redox changes and exudates derived from the plant can help to stimulate the survival and action of these microorganisms. A broad knowledge about the mechanisms in plants for the uptake, translocation, storage, and detoxification of contaminants, and interactions between plants and microorganisms are critical in developing technologies and best management practices for environmental clean-up. A comprehensive understanding of interactions between plants and rhizospheric microorganisms in the rhizosphere and plant-based processes will provide new opportunities to develop more efficient plants and better management practices for removal of contaminants. This chapter reviews plant–microbe interactions in phytoremediation with particular reference to the microbial dynamics in the rhizosphere of plants growing on contaminated soils.


Biotechnology & Biotechnological Equipment | 2015

The usability of Juniperus virginiana L. as a biomonitor of heavy metal pollution in Bishkek City, Kyrgyzstan

Zeki Severoglu; Ibrahim Ilker Ozyigit; Ilhan Dogan; Gulbubu Kurmanbekova; Goksel Demir; Ibrahim Ertugrul Yalcin; Gulten Kasoglu Kari

Uncontrolled and unplanned urbanization and industrialization due to increase of population and rapid industrial development have created severe environmental problems in Kyrgyzstan during the last few decades. In this study, Juniperus virginiana, a dioecious species, was employed in order to make assessment of the heavy metal pollution rate in the area and of the heavy metal pollution impact on the mineral nutrient status of the plant. For this study, leaf (washed and unwashed) and bark samples of J. virginiana, and its co-located soil samples were collected from eight different stations, all in the capital of Kyrgyzstan, Bishkek, in 2012 vegetation period. The standard procedures were used and the determinations of heavy metal and nutrient element contents (Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn) in all samples were done using inductively coupled plasma-optical emission spectroscopy. According to our measurements, J. virginiana was found to be capable of accumulating a considerable amount of metals and the mineral nutrient uptake pattern was altered because of metal deposition in the plant, which showed a contamination risk in the area.


Communications in Soil Science and Plant Analysis | 2017

Mineral Nutrient Acquisition by Cotton Cultivars Grown under Salt Stress

Ibrahim Ilker Ozyigit; Ilhan Dogan; Goksel Demir; Ibrahim Ertugrul Yalcin

ABSTRACT Physiological responses were investigated in two cotton cultivars grown at various concentrations of sodium chloride (NaCl) in order to determine the degree of the tolerance of the cultivars to salt stress and understand the physiological responses with respect to utilization of mineral nutrients. After germination of the seeds of cotton cultivars, they were transferred into standard pots with 210 g sterilized compost and watered with 30 ml Hoagland’s solution containing different concentrations (0, 50, 100, 200, and 400 mM) of NaCl at two-day intervals for 3 months. Growth parameters were measured and the mineral nutrient analyses were done using inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Fisher Scientific, Waltman, MA). It was observed that plant growth and mineral nutritional status of both cultivars were altered extensively in those grown with NaCl. Excess NaCl reduces the concentrations of certain mineral nutrients and increases that of others, the patterns depending on the mineral nutrient and the plant part and varieties being compared to the control.


Biotechnology & Biotechnological Equipment | 2016

Screening of damage induced by lead (Pb) in rye (Secale cereale L.) – a genetic and physiological approach

Ibrahim Ilker Ozyigit; Ilhan Dogan; Sezen Igdelioglu; Ertugrul Filiz; Sedat Karadeniz; Zeynep Uzunova

ABSTRACT The fields in which lead (Pb) finds application in the modern world have increased dramatically in recent years. As a consequence of this intensive utilization of Pb, its toxicity tends to pose more and more environmental problems. The aim of this study was to evaluate the genotoxic potential of Pb and to characterize some physiological parameters in Secale cereale under Pb stress. Plants were subjected to different exposure levels of Pb (0, 100, 200 and 400 µmol/L) for two weeks. At the end of the experimental period, the effects of Pb exposure on the photosynthetic pigments content (chlorophyll a and b, total chlorophyll, chlorophyll a/b and carotenoids) and genetic material of S. cereale were studied. To evaluate the genotoxic effect of Pb, random amplified polymorphic DNA – polymerase chain reaction (RAPD-PCR) was employed. The obtained results showed alteration in the photosynthetic pigments content and RAPD-PCR profiles of S. cereale grown in the presence of Pb. The alterations in the RAPD-PCR profiles following Pb treatments appeared to be losses of normal bands and occurrences of new bands compared to unexposed plantlets. Overall, the content of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids decreased by 6.68%, 6.08%, 2.89% and 8.57%, respectively, under severe Pb stress (400 µmol/L).


Archive | 2012

MINERAL ELEMENT DISTRIBUTION OF COTTON (GOSSYPIUM HIRSUTUM L.) SEEDLINGS UNDER DIFFERENT SALINITY LEVELS

Ilhan Dogan; Ibrahim Ilker Ozyigit; Goksel Demir


Plant Omics | 2015

In silico analysis of simple sequence repeats (SSRs) in chloroplast genomes of Glycine species

Ibrahim Ilker Ozyigit; Ilhan Dogan; Ertugrul Filiz


Archive | 2012

SALINITY INDUCED CHANGES IN COTTON (GOSSYPIUM HIRSUTUM L.)

Ilhan Dogan; Guzin Kekec; Ibrahim Ilker Ozyigit; Mehmet Serdal Sakcali

Collaboration


Dive into the Ilhan Dogan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge