Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilia Voskoboinik is active.

Publication


Featured researches published by Ilia Voskoboinik.


Nature Reviews Immunology | 2006

Perforin-mediated target-cell death and immune homeostasis

Ilia Voskoboinik; Mark J. Smyth; Joseph A. Trapani

The granule exocytosis pathway of cytotoxic lymphocytes is crucial for immune surveillance and homeostasis. The trafficking of granule components, including the membrane-disruptive protein perforin, to the immunological synapse leads to the delivery of granule proteases (granzymes) into the target cell and its destruction through apoptosis. Several independent molecular abnormalities associated with defects of either granule trafficking or perforin function can cause cytotoxic lymphocyte dysfunction. In humans, inherited perforin mutations result in severe immune dysregulation that manifests as familial haemophagocytic lymphohistiocytosis. This Review describes recent progress in defining the structure, function, biochemistry and cell biology of perforin.


Nature | 2010

The structural basis for membrane binding and pore formation by lymphocyte perforin.

Ruby H. P. Law; Natalya Lukoyanova; Ilia Voskoboinik; Tom T. Caradoc-Davies; Katherine Baran; Michelle Anne Dunstone; Michael E. D'Angelo; Elena V. Orlova; Fasséli Coulibaly; Sandra Verschoor; Kylie A. Browne; Annette Ciccone; Michael Kuiper; Phillip I. Bird; Joseph A. Trapani; Helen R. Saibil; James C. Whisstock

Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin ‘key-shaped’ molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca2+-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.


Science | 2007

A Common Fold Mediates Vertebrate Defense and Bacterial Attack

Carlos Joaquim Rosado; Ashley M. Buckle; Ruby H. P. Law; Rebecca Elizabeth Butcher; Wan-Ting Kan; Catherina H. Bird; Kheng Sok Ung; Kylie A. Browne; Katherine Baran; Tanya Ann Bashtannyk-Puhalovich; Noel G. Faux; Wilson Wong; Corrine Joy Porter; Robert N. Pike; Andrew M. Ellisdon; Mary C. Pearce; Stephen P. Bottomley; Jonas Emsley; Alexander Smith; Jamie Rossjohn; Elizabeth L. Hartland; Ilia Voskoboinik; Joseph A. Trapani; Phillip I. Bird; Michelle Anne Dunstone; James C. Whisstock

Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.


Cellular Microbiology | 2008

The MACPF/CDC family of pore-forming toxins

Carlos Joaquim Rosado; Stephanie Kondos; Tara Elaina Bull; Michael Kuiper; Ruby H. P. Law; Ashley M. Buckle; Ilia Voskoboinik; Phillip I. Bird; Joseph A. Trapani; James C. Whisstock; Michelle Anne Dunstone

Pore‐forming toxins (PFTs) are commonly associated with bacterial pathogenesis. In eukaryotes, however, PFTs operate in the immune system or are deployed for attacking prey (e.g. venoms). This review focuses upon two families of globular protein PFTs: the cholesterol‐dependent cytolysins (CDCs) and the membrane attack complex/perforin superfamily (MACPF). CDCs are produced by Gram‐positive bacteria and lyse or permeabilize host cells or intracellular organelles during infection. In eukaryotes, MACPF proteins have both lytic and non‐lytic roles and function in immunity, invasion and development. The structure and molecular mechanism of several CDCs are relatively well characterized. Pore formation involves oligomerization and assembly of soluble monomers into a ring‐shaped pre‐pore which undergoes conformational change to insert into membranes, forming a large amphipathic transmembrane β‐barrel. In contrast, the structure and mechanism of MACPF proteins has remained obscure. Recent crystallographic studies now reveal that although MACPF and CDCs are extremely divergent at the sequence level, they share a common fold. Together with biochemical studies, these structural data suggest that lytic MACPF proteins use a CDC‐like mechanism of membrane disruption, and will help understand the roles these proteins play in immunity and development.


Nature Reviews Immunology | 2015

Perforin and granzymes: function, dysfunction and human pathology

Ilia Voskoboinik; James C. Whisstock; Joseph A. Trapani

A defining property of cytotoxic lymphocytes is their expression and regulated secretion of potent toxins, including the pore-forming protein perforin and serine protease granzymes. Until recently, mechanisms of pore formation and granzyme transfer into the target cell were poorly understood, but advances in structural and cellular biology have now begun to unravel how synergy between perforin and granzymes brings about target cell death. These and other advances are demonstrating the surprisingly broad pathophysiological roles of the perforin–granzyme pathway, and this has important implications for understanding immune homeostasis and for developing immunotherapies for cancer and other diseases. In particular, we are beginning to define and understand a range of human diseases that are associated with a failure to deliver active perforin to target cells. In this Review, we discuss the current understanding of the structural, cellular and clinical aspects of perforin and granzyme biology.


Immunological Reviews | 2010

Perforin: structure, function, and role in human immunopathology.

Ilia Voskoboinik; Michelle Anne Dunstone; Katherine Baran; James C. Whisstock; Joseph A. Trapani

Summary:  The secretory granule‐mediated cell death pathway is the key mechanism for elimination of virus‐infected and transformed target cells by cytotoxic lymphocytes. The formation of the immunological synapse between an effector and a target cell leads to exocytic trafficking of the secretory granules and the release of their contents, which include pro‐apoptotic serine proteases, granzymes, and pore‐forming perforin into the synapse. There, perforin polymerizes and forms a transmembrane pore that allows the delivery of granzymes into the cytosol, where they initiate various apoptotic death pathways. Unlike relatively redundant individual granzymes, functional perforin is absolutely essential for cytotoxic lymphocyte function and immune regulation in the host. Nevertheless, perforin is still the least studied and understood cytotoxic molecule in the immune system. In this review, we discuss the current state of affairs in the perforin field: the protein’s structure and function as well as its role in immune‐mediated diseases.


Journal of Biological Chemistry | 1999

Functional analysis of the N-terminal CXXC metal-binding motifs in the human Menkes copper-transporting P-type ATPase expressed in cultured mammalian cells.

Ilia Voskoboinik; Daniel Strausak; Mark Greenough; Hilary Brooks; Michael J. Petris; Suzanne Smith; Julian F. B. Mercer; James Camakaris

The Menkes protein (MNK) is a copper-transporting P-type ATPase, which has six highly conserved metal-binding sites, GMTCXXC, at the N terminus. The metal-binding sites may be involved in MNK trafficking and/or copper-translocating activity. In this study, we report the detailed functional analysis in mammalian cells of recombinant human MNK and its mutants with various metal-binding sites altered by site-directed mutagenesis. The results of the study, both in vitro and in vivo, provide evidence that the metal-binding sites of MNK are not essential for the ATP-dependent copper-translocating activity of MNK. Moreover, metal-binding site mutations, which resulted in a loss of ability of MNK to traffick to the plasma membrane, produced a copper hyperaccumulating phenotype. Using an in vitro vesicle assay, we demonstrated that the apparent K m andV max values for the wild type MNK and its mutants were not significantly different. The results of this study suggest that copper-translocating activity of MNK and its copper-induced relocalization to the plasma membrane represent a well coordinated copper homeostasis system. It is proposed that mutations in MNK which alter either its catalytic activity or/and ability to traffick can be the cause of Menkes disease.


Immunity | 2009

The Molecular Basis for Perforin Oligomerization and Transmembrane Pore Assembly

Katherine Baran; Michelle Anne Dunstone; Jenny Chia; Annette Ciccone; Kylie A. Browne; Christopher J. Clarke; Natalya Lukoyanova; Helen R. Saibil; James C. Whisstock; Ilia Voskoboinik; Joseph A. Trapani

Perforin, a pore-forming protein secreted by cytotoxic lymphocytes, is indispensable for destroying virus-infected cells and for maintaining immune homeostasis. Perforin polymerizes into transmembrane channels that inflict osmotic stress and facilitate target cell uptake of proapoptotic granzymes. Despite this, the mechanism through which perforin monomers self-associate remains unknown. Our current study establishes the molecular basis for perforin oligomerization and pore assembly. We show that after calcium-dependent membrane binding, direct ionic attraction between the opposite faces of adjacent perforin monomers was necessary for pore formation. By using mutagenesis, we identified the opposing charges on residues Arg213 (positive) and Glu343 (negative) to be critical for intermolecular interaction. Specifically, disrupting this interaction had no effect on perforin synthesis, folding, or trafficking in the killer cell, but caused a marked kinetic defect of oligomerization at the target cell membrane, severely disrupting lysis and granzyme B-induced apoptosis. Our study provides important insights into perforins mechanism of action.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer

Jenny Chia; Kim Pin Yeo; James C. Whisstock; Michelle Anne Dunstone; Joseph A. Trapani; Ilia Voskoboinik

The pore-forming protein perforin is critical for defense against many human pathogens and for preventing a catastrophic collapse of immune homeostasis, manifested in infancy as Type 2 familial hemophagocytic lymphohistiocytosis (FHL). However, no evidence has yet linked defective perforin cytotoxicity with cancer susceptibility in humans. Here, we examined perforin function in every patient reported in the literature who lived to at least 10 years of age without developing FHL despite inheriting mutations in both of their perforin (PRF1) alleles. Our analysis showed that almost 50% of these patients developed at least 1 hematological malignancy in childhood or adolescence. The broad range of pathologies argued strongly against a common environmental or viral cause for the extraordinary cancer incidence. Functionally, what distinguished these patients was their inheritance of PRF1 alleles encoding temperature-sensitive missense mutations. By contrast, truly null missense mutations with no rescue at the permissive temperature were associated with the more common severe presentation with FHL in early infancy. Our study provides the first mechanistic evidence for a link between defective perforin-mediated cytotoxicity and cancer susceptibility in humans and establishes the paradigm that temperature sensitivity of perforin function is a predictor of FHL severity.


Blood | 2013

Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack

Jamie A. Lopez; Olivia Susanto; Misty R. Jenkins; Natalya Lukoyanova; Vivien R. Sutton; Ruby H. P. Law; Angus P. R. Johnston; Catherina H. Bird; Phillip I. Bird; James C. Whisstock; Joseph A. Trapani; Helen R. Saibil; Ilia Voskoboinik

Cytotoxic lymphocytes serve a key role in immune homeostasis by eliminating virus-infected and transformed target cells through the perforin-dependent delivery of proapoptotic granzymes. However, the mechanism of granzyme entry into cells remains unresolved. Using biochemical approaches combined with time-lapse microscopy of human primary cytotoxic lymphocytes engaging their respective targets, we defined the time course of perforin pore formation in the context of the physiological immune synapse. We show that, on recognition of targets, calcium influx into the lymphocyte led to perforin exocytosis and target cell permeabilization in as little as 30 seconds. Within the synaptic cleft, target cell permeabilization by perforin resulted in the rapid diffusion of extracellular milieu-derived granzymes. Repair of these pores was initiated within 20 seconds and was completed within 80 seconds, thus limiting granzyme diffusion. Remarkably, even such a short time frame was sufficient for the delivery of lethal amounts of granzymes into the target cell. Rapid initiation of apoptosis was evident from caspase-dependent target cell rounding within 2 minutes of perforin permeabilization. This study defines the final sequence of events controlling cytotoxic lymphocyte immune defense, in which perforin pores assemble on the target cell plasma membrane, ensuring efficient delivery of lethal granzymes.

Collaboration


Dive into the Ilia Voskoboinik's collaboration.

Top Co-Authors

Avatar

Joseph A. Trapani

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

James C. Whisstock

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kylie A. Browne

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Jamie A. Lopez

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Thia

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette Ciccone

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge