Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilian Atanassov is active.

Publication


Featured researches published by Ilian Atanassov.


Journal of Cell Biology | 2015

Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels

Arnaud Mourier; Elisa Motori; Tobias Brandt; Marie Lagouge; Ilian Atanassov; Anne Galinier; Gunter Rappl; Susanne Brodesser; Kjell Hultenby; Christoph Dieterich; Nils-Göran Larsson

Mitofusin 2 plays an unexpected role in maintaining the terpenoid biosynthesis pathway and is necessary for mitochondrial coenzyme Q biosynthesis.


Nature Chemical Biology | 2016

Serine is a new target residue for endogenous ADP-ribosylation on histones

Orsolya Leidecker; Juan José Bonfiglio; Thomas Colby; Qi Zhang; Ilian Atanassov; Roko Zaja; Luca Palazzo; Anna Stockum; Ivan Ahel; Ivan Matic

ADP-ribosylation (ADPr) is a biologically and clinically important post-translational modification, but little is known about the amino acids it targets on cellular proteins. Here we present a proteomic approach for direct in vivo identification and quantification of ADPr sites on histones. We have identified 12 unique ADPr sites in human osteosarcoma cells and report serine ADPr as a new type of histone mark that responds to DNA damage.


Plant Methods | 2009

A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps.

Ivan Atanassov; Ilian Atanassov; J. Peter Etchells; Simon R. Turner

BackgroundThe progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs.ResultsHere, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated.ConclusionThe PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.


Molecular Cell | 2017

Serine ADP-Ribosylation Depends on HPF1

Juan José Bonfiglio; Pietro Fontana; Qi Zhang; Thomas Colby; Ian Gibbs-Seymour; Ilian Atanassov; Edward Bartlett; Roko Zaja; Ivan Ahel; Ivan Matic

Summary ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1. Moreover, adding HPF1 to in vitro PARP-1/PARP-2 reactions is necessary and sufficient for serine-specific ADPr of histones and PARP-1 itself. Three endogenous serine ADPr sites are located on the PARP-1 automodification domain. Further identification of serine ADPr on HMG proteins and hundreds of other targets indicates that serine ADPr is a widespread modification. We propose that O-linked protein ADPr is the key signal in PARP-1/PARP-2-dependent processes that govern genome stability.


Cell Metabolism | 2017

Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan

Matthew D.W. Piper; George A. Soultoukis; Eric Blanc; Andrea Mesaros; Samantha L. Herbert; Paula Juricic; Xiaoli He; Ilian Atanassov; Hanna Salmonowicz; Mingyao Yang; Stephen J. Simpson; Carlos Ribeiro; Linda Partridge

Summary Balancing the quantity and quality of dietary protein relative to other nutrients is a key determinant of evolutionary fitness. A theoretical framework for defining a balanced diet would both reduce the enormous workload to optimize diets empirically and represent a breakthrough toward tailoring diets to the needs of consumers. Here, we report a simple and powerful in silico technique that uses the genome information of an organism to define its dietary amino acid requirements. We show for the fruit fly Drosophila melanogaster that such “exome-matched” diets are more satiating, enhance growth, and increase reproduction relative to non-matched diets. Thus, early life fitness traits can be enhanced at low levels of dietary amino acids that do not impose a cost to lifespan. Exome matching also enhanced mouse growth, indicating that it can be applied to other organisms whose genome sequence is known.


Proteomics | 2013

Increased proteome coverage by combining PAGE and peptide isoelectric focusing: Comparative study of gel-based separation approaches.

Ilian Atanassov; Henning Urlaub

The in‐depth analysis of complex proteome samples requires fractionation of the sample into subsamples prior to LC‐MS/MS in shotgun proteomics experiments. We have established a 3D workflow for shotgun proteomics that relies on protein separation by 1D PAGE, gel fractionation, trypsin digestion, and peptide separation by in‐gel IEF, prior to RP‐HPLC‐MS/MS. Our results show that applying peptide IEF can significantly increase the number of proteins identified from PAGE subfractionation. This method delivers deeper proteome coverage and provides a large degree of flexibility in experimentally approaching highly complex mixtures by still relying on protein separation according to molecular weight in the first dimension.


Nucleic Acids Research | 2017

Bayesian prediction of RNA translation from ribosome profiling

Brandon Malone; Ilian Atanassov; Florian Aeschimann; Xinping Li; Helge Großhans; Christoph Dieterich

Abstract Ribosome profiling via high-throughput sequencing (ribo-seq) is a promising new technique for characterizing the occupancy of ribosomes on messenger RNA (mRNA) at base-pair resolution. The ribosome is responsible for translating mRNA into proteins, so information about its occupancy offers a detailed view of ribosome density and position which could be used to discover new translated open reading frames (ORFs), among other things. In this work, we propose Rp-Bp, an unsupervised Bayesian approach to predict translated ORFs from ribosome profiles. We use state-of-the-art Markov chain Monte Carlo techniques to estimate posterior distributions of the likelihood of translation of each ORF. Hence, an important feature of Rp-Bp is its ability to incorporate and propagate uncertainty in the prediction process. A second novel contribution is automatic Bayesian selection of read lengths and ribosome P-site offsets (BPPS). We empirically demonstrate that our read length selection technique modestly improves sensitivity by identifying more canonical and non-canonical ORFs. Proteomics- and quantitative translation initiation sequencing-based validation verifies the high quality of all of the predictions. Experimental comparison shows that Rp-Bp results in more peptide identifications and proteomics-validated ORF predictions compared to another recent tool for translation prediction.


Nucleic Acids Research | 2016

SLIRP stabilizes LRPPRC via an RRM-PPR protein interface

Henrik Spåhr; Agata Rozanska; Xinping Li; Ilian Atanassov; Robert N. Lightowlers; Zofia M.A. Chrzanowska-Lightowlers; Oliver Rackham; Nils-Göran Larsson

LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC–SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC–SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRPs RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein–protein interactions, enabling the formation of a stable complex between these two proteins.


Cell Metabolism | 2017

Increased Total mtDNA Copy Number Cures Male Infertility Despite Unaltered mtDNA Mutation Load

Min Jiang; Timo E.S. Kauppila; Elisa Motori; Xinping Li; Ilian Atanassov; Kat Folz-Donahue; Nina A. Bonekamp; Sara Albarran-Gutierrez; James B. Stewart; Nils-Göran Larsson

Mutations of mtDNA cause mitochondrial diseases and are implicated in age-associated diseases and aging. Pathogenic mtDNA mutations are often present in a fraction of all mtDNA copies, and it has been widely debated whether the proportion of mutant genomes or the absolute number of wild-type molecules determines if oxidative phosphorylation (OXPHOS) will be impaired. Here, we have studied the male infertility phenotype of mtDNA mutator mice and demonstrate that decreasing mtDNA copy number worsens mitochondrial aberrations of spermatocytes and spermatids in testes, whereas an increase in mtDNA copy number rescues the fertility phenotype and normalizes testes morphology as well as spermatocyte proteome changes. The restoration of testes function occurs in spite of unaltered total mtDNA mutation load. We thus demonstrate that increased copy number of mtDNA can efficiently ameliorate a severe disease phenotype caused by mtDNA mutations, which has important implications for developing future strategies for treatment of mitochondrial dysfunction.


eLife | 2017

Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals

Inge Kühl; Maria Miranda; Ilian Atanassov; Irina Kuznetsova; Yvonne Hinze; Arnaud Mourier; Aleksandra Filipovska; Nils-Göran Larsson

Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment.

Collaboration


Dive into the Ilian Atanassov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Dieterich

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge