Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilias Bilionis is active.

Publication


Featured researches published by Ilias Bilionis.


Journal of Computational Physics | 2013

Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification

Ilias Bilionis; Nicholas Zabaras; Bledar A. Konomi; Guang Lin

Computer codes simulating physical systems usually have responses that consist of a set of distinct outputs (e.g., velocity and pressure) that evolve also in space and time and depend on many unknown input parameters (e.g., physical constants, initial/boundary conditions, etc.). Furthermore, essential engineering procedures such as uncertainty quantification, inverse problems or design are notoriously difficult to carry out mostly due to the limited simulations available. The aim of this work is to introduce a fully Bayesian approach for treating these problems which accounts for the uncertainty induced by the finite number of observations. Our model is built on a multi-dimensional Gaussian process that explicitly treats correlations between distinct output variables as well as space and/or time. The proper use of a separable covariance function enables us to describe the huge covariance matrix as a Kronecker product of smaller matrices leading to efficient algorithms for carrying out inference and predictions. The novelty of this work, is the recognition that the Gaussian process model defines a posterior probability measure on the function space of possible surrogates for the computer code and the derivation of an algorithmic procedure that allows us to sample it efficiently. We demonstrate how the scheme can be used in uncertainty quantification tasks in order to obtain error bars for the statistics of interest that account for the finite number of observations.


Journal of Computational Physics | 2012

Multi-output local Gaussian process regression: Applications to uncertainty quantification

Ilias Bilionis; Nicholas Zabaras

We develop an efficient, Bayesian Uncertainty Quantification framework using a novel treed Gaussian process model. The tree is adaptively constructed using information conveyed by the observed data about the length scales of the underlying process. On each leaf of the tree, we utilize Bayesian Experimental Design techniques in order to learn a multi-output Gaussian process. The constructed surrogate can provide analytical point estimates, as well as error bars, for the statistics of interest. We numerically demonstrate the effectiveness of the suggested framework in identifying discontinuities, local features and unimportant dimensions in the solution of stochastic differential equations.


Inverse Problems | 2014

Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective

Ilias Bilionis; Nicholas Zabaras

Solving inverse problems based on computationally demanding forward models is ubiquitously difficult since one is necessarily limited to just a few observations of the response surface. The usual practice is to replace the response surface with a surrogate. However, this approach induces additional uncertainties on the posterior distributions. The main contribution of this work is the reformulation of the Bayesian solution of the inverse problem when the expensive forward model is replaced by the surrogate. We derive three approximations of the reformulated solution with increasing complexity and fidelity. We demonstrate numerically that the proposed approximations capture theuncertaintyofthesolutionoftheinverseprobleminducedbythefactthatthe forward model is replaced by a finite number of simulations. We demonstrate our approach in two different problems: locating the contamination source of a diffusive process and inferring the permeability field of an oil reservoir based on measurements of the oil-cut curves.


Journal of Computational Physics | 2012

Free energy computations by minimization of Kullback-Leibler divergence: An efficient adaptive biasing potential method for sparse representations

Ilias Bilionis; Phaedon-Stelios Koutsourelakis

The present paper proposes an adaptive biasing potential technique for the computation of free energy landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy function, under the same objective of minimizing the Kullback-Leibler divergence between appropriately selected densities. It offers rigorous convergence diagnostics even though history dependent, non-Markovian dynamics are employed. It makes use of a greedy optimization scheme in order to obtain sparse representations of the free energy function which can be particularly useful in multidimensional cases. It employs embarrassingly parallelizable sampling schemes that are based on adaptive Sequential Monte Carlo and can be readily coupled with legacy molecular dynamics simulators. The sequential nature of the


Journal of Chemical Physics | 2013

A stochastic optimization approach to coarse-graining using a relative-entropy framework

Ilias Bilionis; Nicholas Zabaras

Relative entropy has been shown to provide a principled framework for the selection of coarse-grained potentials. Despite the intellectual appeal of it, its application has been limited by the fact that it requires the solution of an optimization problem with noisy gradients. When using deterministic optimization schemes, one is forced to either decrease the noise by adequate sampling or to resolve to ad hoc modifications in order to avoid instabilities. The former increases the computational demand of the method while the latter is of questionable validity. In order to address these issues and make relative entropy widely applicable, we propose alternative schemes for the solution of the optimization problem using stochastic algorithms.


Journal of Computational Physics | 2016

Gaussian processes with built-in dimensionality reduction

Rohit K Tripathy; Ilias Bilionis; Marcial Gonzalez

Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one dimensional granular system.


Journal of Computational Physics | 2015

Uncertainty propagation using infinite mixture of Gaussian processes and variational Bayesian inference

Peng Chen; Nicholas Zabaras; Ilias Bilionis

Uncertainty propagation in flow through porous media problems is a challenging problem. This is due to the high-dimensionality of the random property fields, e.g. permeability and porosity, as well as the computational complexity of the models that are involved. The usual approach is to construct a surrogate response surface and then use it instead of the expensive model to carry out the uncertainty propagation task. However, the construction of the surrogate surface is hampered by various aspects such as the limited number of model evaluations that one can afford, the curse of dimensionality, multi-variate responses with non-trivial correlations, potential localized features of the response and/or discontinuities. In this work, we extend upon the concept of the Multi-output Gaussian Process (MGP) to effectively deal with all of these difficulties simultaneously. This non-trivial extension involves an infinite mixture of MGPs that is trained using variational Bayesian inference. Prior to observing any data, a Dirichlet process is used to generate the components of the MGP mixture. The Bayesian nature of the model allows for the quantification of the uncertainties due to the limited number of simulations, i.e., we can derive error bars for the statistics of interest. The automatic detection of the mixture components by the variational inference algorithm is able to capture discontinuities and localized features without adhering to ad hoc constructions. Finally, correlations between the components of multi-variate responses are captured by the underlying MGP model in a natural way.


SIAM Journal on Scientific Computing | 2012

MULTIDIMENSIONAL ADAPTIVE RELEVANCE VECTOR MACHINES FOR UNCERTAINTY QUANTIFICATION

Ilias Bilionis; Nicholas Zabaras

We develop a Bayesian uncertainty quantification framework using a local binary tree surrogate model that is able to make use of arbitrary Bayesian regression methods. The tree is adaptively constructed using information about the sensitivity of the response and is biased by the underlying input probability distribution. The local Bayesian regressions are based on a reformulation of the relevance vector machine model that accounts for the multiple output dimensions. A fast algorithm for training the local models is provided. The methodology is demonstrated with examples in the solution of stochastic differential equations.


AIP Advances | 2017

Process optimization of graphene growth in a roll-to-roll plasma CVD system

Majed A. Alrefae; Anurag Kumar; Piyush Pandita; Aaditya Candadai; Ilias Bilionis; Timothy S. Fisher

A systematic approach to mass-production of graphene and other 2D materials is essential for current and future technological applications. By combining a sequential statistical design of experiments with in-situ process monitoring, we demonstrate a method to optimize graphene growth on copper foil in a roll-to-roll rf plasma chemical vapor deposition system. Data-driven predictive models show that gas pressure, nitrogen, oxygen, and plasma power are the main process parameters affecting the quality of graphene. Furthermore, results from in-situ optical emission spectroscopy reveal a positive correlation of CH radical to high quality of graphene, whereas O and H atoms, Ar+ ion, and C2 and CN radicals negatively correlate to quality. This work demonstrates the deposition of graphene on copper foil at 1 m/min, a scale suitable for large-scale production. The techniques described here can be extended to other 2D materials and roll-to-roll manufacturing processes.


Journal of Verification, Validation and Uncertainty Quantification | 2016

Computationally Efficient Variational Approximations for Bayesian Inverse Problems

Panagiotis Tsilifis; Ilias Bilionis; Ioannis Katsounaros; Nicholas Zabaras

The major drawback of the Bayesian approach to model calibration is the computational burden involved in describing the posterior distribution of the unknown model parameters arising from the fact that typical Markov chain Monte Carlo (MCMC) samplers require thousands of forward model evaluations. In this work, we develop a variational Bayesian approach to model calibration which uses an information theoretic criterion to recast the posterior problem as an optimization problem. Specifically, we parameterize the posterior using the family of Gaussian mixtures and seek to minimize the information loss incurred by replacing the true posterior with an approximate one. Our approach is of particular importance in underdetermined problems with expensive forward models in which both the classical approach of minimizing a potentially regularized misfit function and MCMC are not viable options. We test our methodology on two surrogate-free examples and show that it dramatically outperforms MCMC methods.

Collaboration


Dive into the Ilias Bilionis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge