Ilir Dubova
Salk Institute for Biological Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilir Dubova.
Nature Cell Biology | 2013
Yun Xia; Emmanuel Nivet; Ignacio Sancho-Martinez; Thomas F. Gallegos; Keiichiro Suzuki; Daiji Okamura; Min-Zu Wu; Ilir Dubova; Concepcion Rodriguez Esteban; Nuria Montserrat; Josep M. Campistol; Juan Carlos Izpisua Belmonte
Diseases affecting the kidney constitute a major health issue worldwide. Their incidence and poor prognosis affirm the urgent need for the development of new therapeutic strategies. Recently, differentiation of pluripotent cells to somatic lineages has emerged as a promising approach for disease modelling and cell transplantation. Unfortunately, differentiation of pluripotent cells into renal lineages has demonstrated limited success. Here we report on the differentiation of human pluripotent cells into ureteric-bud-committed renal progenitor-like cells. The generated cells demonstrated rapid and specific expression of renal progenitor markers on 4-day exposure to defined media conditions. Further maturation into ureteric bud structures was accomplished on establishment of a three-dimensional culture system in which differentiated human cells assembled and integrated alongside murine cells for the formation of chimeric ureteric buds. Altogether, our results provide a new platform for the study of kidney diseases and lineage commitment, and open new avenues for the future application of regenerative strategies in the clinic.
Cell Stem Cell | 2011
Guang-Hui Liu; Keiichiro Suzuki; Jing Qu; Ignacio Sancho-Martinez; Fei Yi; Mo Li; Sachin Kumar; Emmanuel Nivet; Jessica Kim; Rupa Devi Soligalla; Ilir Dubova; April Goebl; Nongluk Plongthongkum; Ho-Lim Fung; Kun Zhang; Jeanne F. Loring; Louise C. Laurent; Juan Carlos Izpisua Belmonte
Combination of stem cell-based approaches with gene-editing technologies represents an attractive strategy for studying human disease and developing therapies. However, gene-editing methodologies described to date for human cells suffer from technical limitations including limited target gene size, low targeting efficiency at transcriptionally inactive loci, and off-target genetic effects that could hamper broad clinical application. To address these limitations, and as a proof of principle, we focused on homologous recombination-based gene correction of multiple mutations on lamin A (LMNA), which are associated with various degenerative diseases. We show that helper-dependent adenoviral vectors (HDAdVs) provide a highly efficient and safe method for correcting mutations in large genomic regions in human induced pluripotent stem cells and can also be effective in adult human mesenchymal stem cells. This type of approach could be used to generate genotype-matched cell lines for disease modeling and drug discovery and potentially also in therapeutics.
Nature | 2012
Guang-Hui Liu; Jing Qu; Keiichiro Suzuki; Emmanuel Nivet; MeiZhi Li; Nuria Montserrat; Fei Yi; Xiuling Xu; Sergio Ruiz; Weiqi Zhang; Ulrich Wagner; Audrey Kim; Bing Ren; Ying Li; April Goebl; Jessica Kim; Rupa Devi Soligalla; Ilir Dubova; James Thompson; John R. Yates; Concepcion Rodriguez Esteban; Ignacio Sancho-Martinez; Juan Carlos Izpisua Belmonte
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson’s disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson’s disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson’s disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson’s disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson’s disease pathology and may help to open new avenues for Parkinson’s disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
Nature Methods | 2013
Leo Kurian; Ignacio Sancho-Martinez; Emmanuel Nivet; Aitor Aguirre; Krystal Moon; Caroline Pendaries; Cécile Volle-Challier; Françoise Bono; Jean-Marc Herbert; Julian Pulecio; Yun Xia; Mo Li; Nuria Montserrat; Sergio Ruiz; Ilir Dubova; C. Rodriguez; Ahmet M. Denli; Francesca S. Boscolo; Rathi D. Thiagarajan; Fred H. Gage; Jeanne F. Loring; Louise C. Laurent; Juan Carlos Izpisua Belmonte
Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct, in the absence of proliferation and multipotent progenitor generation, or indirect, by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state, induced by brief exposure to reprogramming factors, followed by differentiation. We use this approach to convert human fibroblasts to mesodermal progenitor cells, including by non-integrative approaches. These progenitor cells demonstrated bipotent differentiation potential and could generate endothelial and smooth muscle lineages. Differentiated endothelial cells exhibited neo-angiogenesis and anastomosis in vivo. This methodology for indirect lineage conversion to angioblast-like cells adds to the armamentarium of reprogramming approaches aimed at the study and treatment of ischemic pathologies.
Molecular and Cellular Biology | 2004
Ricardo G. Correa; Vinay Tergaonkar; Ilir Dubova; Juan Carlos Izpisúa-Belmonte; Inder M. Verma
ABSTRACT Although largely involved in innate and adaptive immunity, NF-κB plays an important role in vertebrate development. In chicks, the inactivation of the NF-κΒ pathway induces functional alterations of the apical ectodermal ridge, which mediates limb outgrowth. In mice, the complete absence of NF-κB activity leads to prenatal death and neural tube defects. Here, we report the cloning and characterization of NF-κΒ/IκB proteins in zebra fish. Despite being ubiquitously expressed among the embryonic tissues, NF-κΒ/IκB members present distinct patterns of gene expression during the early zebra fish development. Biochemical assays indicate that zebra fish NF-κΒ proteins are able to bind consensus DNA-binding (κB) sites and inhibitory IκBα proteins from mammals. We show that zebra fish IκBαs are degraded in a time-dependent manner after induction of transduced murine embryo fibroblasts (MEFs) and that these proteins are able to rescue NF-κΒ activity in IκBα−/− MEFs. Expression of a dominant-negative form of the murine IκBα (mIκBαM), which is able to block NF-κΒ in zebra fish cells, interferes with the notochord differentiation, generating no tail (ntl)-like embryos. This phenotype can be rescued by coinjection of the T-box gene ntl (Brachyury homologue), which is typically required for the formation of posterior mesoderm and axial development, suggesting that ntl lies downstream of NF-κΒ. We further show that ntl and Brachyury promoter regions contain functional κB sites and NF-κΒ can directly modulate ntl expression. Our study illustrates the conservation and compatibility of NF-κΒ/IκB proteins among vertebrates and the importance of NF-κΒ pathway in mesoderm formation during early embryogenesis.
Nature Communications | 2014
Guang Hui Liu; Keiichiro Suzuki; Mo Li; Jing Qu; Nuria Montserrat; Carolina Tarantino; Ying Gu; Fei Yi; Xiuling Xu; Weiqi Zhang; Sergio Ruiz; Nongluk Plongthongkum; Kun Zhang; Shigeo Masuda; Emmanuel Nivet; Yuji Tsunekawa; Rupa Devi Soligalla; April Goebl; Emi Aizawa; Na Young Kim; Jessica Kim; Ilir Dubova; Ying Li; Ruotong Ren; Christopher Benner; Antonio del Sol; Juan A. Bueren; Juan P. Trujillo; Jordi Surrallés; Enrico Cappelli
Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.
Cell Research | 2011
Mo Li; Keiichiro Suzuki; Jing Qu; Preeti Saini; Ilir Dubova; Fei Yi; Jungmin Lee; Ignacio Sancho-Martinez; Guang-Hui Liu; Juan Carlos Izpisua Belmonte
Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs
Proceedings of the National Academy of Sciences of the United States of America | 2008
Joaquín Rodríguez-León; Concepcion Rodriguez Esteban; Mercè Martí; Belén Santiago-Josefat; Ilir Dubova; Xavier Rubiralta; Juan Carlos Izpisua Belmonte
Organ shape and size, and, ultimately, organ function, relate in part to the cell and tissue spatial arrangement that takes place during embryonic development. Despite great advances in the genetic regulatory networks responsible for tissue and organ development, it is not yet clearly understood how specific gene functions are linked to the specific morphogenetic processes underlying the internal organ asymmetries found in vertebrate animals. During female chick embryogenesis, and in contrast to males where both testes develop symmetrically, asymmetrical gonad morphogenesis results in only one functional ovary. The disposition of paired organs along the left–right body axis has been shown to be regulated by the activity of the homeobox containing gene pitx2. We have found that pitx2 regulates cell adhesion, affinity, and cell recognition events in the developing gonad primordium epithelia. This in turn not only allows for proper somatic development of the gonad cortex but also permits the proliferation and differentiation of primordial germ cells. We illustrate how Pitx2 activity directs asymmetrical gonad morphogenesis by controlling mitotic spindle orientation of the developing gonad cortex and how, by modulating cyclinD1 expression during asymmetric ovarian development, Pitx2 appears to control gonad organ size. All together our observations indicate that the effects elicited by Pitx2 during the development of the female chick ovary are critical for cell topology, growth, fate, and ultimately organ morphogenesis and function.
Stem Cells | 2014
Julian Pulecio; Emmanuel Nivet; Ignacio Sancho-Martinez; Marianna Vitaloni; Guillermo Guenechea; Yun Xia; Leo Kurian; Ilir Dubova; Juan A. Bueren; Leopoldo Laricchia-Robbio; Juan Carlos Izpisua Belmonte
Reprogramming technologies have emerged as a promising approach for future regenerative medicine. Here, we report on the establishment of a novel methodology allowing for the conversion of human fibroblasts into hematopoietic progenitor‐like cells with macrophage differentiation potential. SOX2 overexpression in human fibroblasts, a gene found to be upregulated during hematopoietic reconstitution in mice, induced the rapid appearance of CD34+ cells with a concomitant upregulation of mesoderm‐related markers. Profiling of cord blood hematopoietic progenitor cell populations identified miR‐125b as a factor facilitating commitment of SOX2‐generated CD34+ cells to immature hematopoietic‐like progenitor cells with grafting potential. Further differentiation toward the monocytic lineage resulted in the appearance of CD14+ cells with functional phagocytic capacity. In vivo transplantation of SOX2/miR‐125b‐generated CD34+ cells facilitated the maturation of the engrafted cells toward CD45+ cells and ultimately the monocytic/macrophage lineage. Altogether, our results indicate that strategies combining lineage conversion and further lineage specification by in vivo or in vitro approaches could help to circumvent long‐standing obstacles for the reprogramming of human cells into hematopoietic cells with clinical potential. Stem Cells 2014;32:2923–2938
Nature Communications | 2016
Ignacio Sancho-Martinez; Emmanuel Nivet; Yun Xia; Ă Tomoaki Hishida; Aitor Aguirre; Alejandro Ocampo; Li Ma; Ă Robert Morey; Marie N. Krause; Andreas Zembrzycki; Olaf Ă Ansorge; Eric Vazquez-Ferrer; Ilir Dubova; Pradeep Reddy; Ă David Lam; Yuriko Hishida; Min-Zu Wu; Concepcion Rodriguez Esteban; Dennis D.M. O'Leary; Geoffrey M. Wahl; Inder M. Verma; Louise C. Laurent; Juan Carlos Izpisua Belmonte
Glioma tumour-initiating cells (GTICs) can originate upon the transformation of neural progenitor cells (NPCs). Studies on GTICs have focused on primary tumours from which GTICs could be isolated and the use of human embryonic material. Recently, the somatic genomic landscape of human gliomas has been reported. RTK (receptor tyrosine kinase) and p53 signalling were found dysregulated in ∼90% and 86% of all primary tumours analysed, respectively. Here we report on the use of human-induced pluripotent stem cells (hiPSCs) for modelling gliomagenesis. Dysregulation of RTK and p53 signalling in hiPSC-derived NPCs (iNPCs) recapitulates GTIC properties in vitro. In vivo transplantation of transformed iNPCs leads to highly aggressive tumours containing undifferentiated stem cells and their differentiated derivatives. Metabolic modulation compromises GTIC viability. Last, screening of 101 anti-cancer compounds identifies three molecules specifically targeting transformed iNPCs and primary GTICs. Together, our results highlight the potential of hiPSCs for studying human tumourigenesis.