Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Illan J. Kramer is active.

Publication


Featured researches published by Illan J. Kramer.


Nature Nanotechnology | 2012

Hybrid passivated colloidal quantum dot solids

Alexander H. Ip; Susanna M. Thon; Sjoerd Hoogland; Oleksandr Voznyy; David Zhitomirsky; Ratan Debnath; Larissa Levina; Lisa R. Rollny; Graham H. Carey; Armin Fischer; Kyle W. Kemp; Illan J. Kramer; Zhijun Ning; André J. Labelle; Kang Wei Chou; Aram Amassian; Edward H. Sargent

Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.


ACS Nano | 2010

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

Andras G. Pattantyus-Abraham; Illan J. Kramer; Aaron Barkhouse; Xihua Wang; Gerasimos Konstantatos; Ratan Debnath; Larissa Levina; Ines Raabe; Mohammad Khaja Nazeeruddin; Michael Grätzel; Edward H. Sargent

Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest open-circuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety.


Advanced Materials | 2011

Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

D. Aaron R. Barkhouse; Ratan Debnath; Illan J. Kramer; David Zhitomirsky; Andras G. Pattantyus-Abraham; Larissa Levina; Lioz Etgar; Michael Grätzel; Edward H. Sargent

The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported.


Advanced Materials | 2016

Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

Xinzheng Lan; Oleksandr Voznyy; Amirreza Kiani; F. Pelayo García de Arquer; Abdullah Saud Abbas; Gi-Hwan Kim; Mengxia Liu; Zhenyu Yang; Grant Walters; Jixian Xu; Mingjian Yuan; Zhijun Ning; Fengjia Fan; Pongsakorn Kanjanaboos; Illan J. Kramer; David Zhitomirsky; Philip Lee; Alexander Perelgut; Sjoerd Hoogland; Edward H. Sargent

A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.


Advanced Materials | 2011

Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

Huan Liu; Jiang Tang; Illan J. Kramer; Ratan Debnath; Ghada I. Koleilat; Xihua Wang; Armin Fisher; Rui Li; Lukasz Brzozowski; Larissa Levina; Edward H. Sargent

Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization.


Advanced Materials | 2012

Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

Illan J. Kramer; David Zhitomirsky; John D. Bass; Philip M. Rice; Teya Topuria; Leslie E. Krupp; Susanna M. Thon; Alexander H. Ip; Ratan Debnath; Ho-Cheol Kim; Edward H. Sargent

A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%.


Nano Letters | 2011

Solar Cells Using Quantum Funnels

Illan J. Kramer; Larissa Levina; Ratan Debnath; David Zhitomirsky; Edward H. Sargent

Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.


Advanced Materials | 2013

Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells.

Xinzheng Lan; Jing Bai; Silvia Masala; Susanna M. Thon; Yuan Ren; Illan J. Kramer; Sjoerd Hoogland; Arash Simchi; Ghada I. Koleilat; Daniel Paz-Soldan; Zhijun Ning; André J. Labelle; Jin Young Kim; Ghassan E. Jabbour; Edward H. Sargent

Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained.


Advanced Materials | 2015

Efficient Spray‐Coated Colloidal Quantum Dot Solar Cells

Illan J. Kramer; James C. Minor; Gabriel Moreno-Bautista; Lisa R. Rollny; Pongsakorn Kanjanaboos; Damir Kopilovic; Susanna M. Thon; Graham H. Carey; Kang Wei Chou; David Zhitomirsky; Aram Amassian; Edward H. Sargent

A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control-an approach termed as sprayLD-an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.


Nano Letters | 2012

Colloidal Quantum Dot Photovoltaics: The Effect of Polydispersity

David Zhitomirsky; Illan J. Kramer; André J. Labelle; Armin Fischer; Ratan Debnath; Jun Pan; Osman M. Bakr; Edward H. Sargent

The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity.

Collaboration


Dive into the Illan J. Kramer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiang Tang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhijun Ning

ShanghaiTech University

View shared research outputs
Researchain Logo
Decentralizing Knowledge