Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Illimar Altosaar is active.

Publication


Featured researches published by Illimar Altosaar.


Molecular Breeding | 2000

Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species.

Qingyao Shu; Gong-Yin Ye; Hairui Cui; Xiongying Cheng; Youbin Xiang; Dianxing Wu; Mingwei Gao; Yingwu Xia; Cui Hu; Ravinder Sardana; Illimar Altosaar

To fully explore the resistance potential of transgenic rice produced by Agrobacterium-mediated transformation, an elite line KMD1 was assessed for its resistance to eight lepidopteran rice pest species. KMD1 contained a synthetic cry1Ab gene from Bacillus thuringiensis under the control of a maize ubiquitin promoter. It was derived from a commercial japonica Chinese rice variety Xiushui 11, and bred true for both agronomic traits and a cry1Ab gene when the bioassays were done in 1998 in the R5 generation. The eight lepidopteran pest species were: four Pyralidae species: Chilo suppressalis (striped stem borer, SSB), Scirpophaga incertulas (yellow stem borer, YSB), Cnaphalocrocis medinalis (leaf folder), Herpitogramma licarisalis; two Noctuidae: Sesamia inferens (pink stem borer, PSB) and Naranga anescens; one Stayridae: Mycalesis gotama; and one Hesperiidae, Parnara guttata. In laboratory bioassays, 100% mortality was observed in all insect species when their newly hatched or third-instar larvae were fed KMD1 leaf tissues, whereas only 9.65% of the neonates and none of the third-instar larvae died when fed the leaf tissues of non-transgenic control. Moreover, the leaf area of control tissues consumed in four days by stem borers was 20 to 40 times higher than that of KMD1 tissues, and the area of control tissues eaten by leaf-feeding species was 120 to 180 times greater than that of the transgenic tissues. Under natural infestation, no KMD1 plant was visibly damaged by the SSB, YSB and leaf folder in field evaluation. On the other hand, 80, 9.3 and 88.7% of control plants were injured by SSB, YSB, and leaf folder, respectively. These data disclosed that the transgenic line was highly resistant to a broad spectrum of lepidopteran insect species and could be useful in insect resistance breeding programs.


Journal of Economic Entomology | 2001

Field Evaluation of Resistance of Transgenic Rice Containing a Synthetic cry1Ab Gene from Bacillus thuringiensis Berliner to Two Stem Borers

Gong-Yin Ye; Qingyao Shu; Hongwei Yao; Hai-Riu Cui; Xiongying Cheng; Cui Hu; Yin-Wu Xia; Mingwei Gao; Illimar Altosaar

Abstract Two transgenic rice (Oryza sativa L.) lines, KMD1 and KMD2 at the R4 generation, transformed with a synthetic cry1Ab gene from Bacillus thuringiensis Berliner, were first evaluated for stem borer resistance in the field during the rice growing season of 1998 in two areas of Zhejiang Province, China. Both KMD1 and KMD2 were highly resistant to the stem borers Chilo suppressalis (Walker) and Scirpophaga incertulas (Walker), and were completely undamaged during the whole rice growing season. In contrast, damage to the plants of the untransformed parental control (Xiushui 11) was in the form of deadhearts or whiteheads. Under natural infestation by the C. suppressalis, the damage to control plants reached a peak of 88.7% of plants and 20.1% of tillers encountered with deadhearts. Under artificial and natural infestation of neonate striped stem borers at the vegetative stage and booting stage, 100% of plants and 25.6% of tillers, 78.9% of plants and 15.6% of productive tillers among artificially infested control plants were observed with the symptom of deadhearts and whiteheads, respectively. Damage to the control plants from artificial infestation by the S. incertulas reached a peak of 97.0% of plants and 22.9% of tillers damaged. The field research indicated that both KMD1 and KMD2 show great potential for protecting rice from attack by these two stem borers.


Plant Molecular Biology | 1991

A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5' flanking region are conserved in other pollen-specific promoters.

Diego Albani; Illimar Altosaar; Paul G. Arnison; Steven F. Fabijanski

Differential screening of a Brassica napus genomic library led to the isolation of the clone named Bp 19 containing a gene which is highly expressed during microspore development. The accumulation of Bp 19 mRNA starts in uninucleate microspores, increases during development reaching a peak in the late stages but declines considerably in mature pollen. The nucleotide sequence of the entire coding region and of extended portions of the 5′ and 3′ flanking regions was determined. Several homologous cDNA clones were also isolated and sequenced. The Bp 19 gene contains a single intron of 137 bp and gives origin to a mRNA of ca. 1.9 kb which codes for a polypeptide of 584 amino acids. Bp 19 protein has an estimated molecular weight of 63 kilodaltons and has a highly hydrophobic amino terminal region which shows features of a signal peptide. The carboxy half of the Bp 19 protein, starting at amino acid 269, has striking sequence similarity to the pectin esterases of tomato and of the plant pathogen Erwinia chrysanthemi. Four short domains are extremely well conserved in all the three proteins and therefore could represent catalytic sites responsible for enzyme activity. Comparison of the 5′ flanking region of the Bp 19 gene with the sequence of other pollen-specific promoters revealed the presence of several conserved regions. These short promoter sequences could correspond to regulatory elements responsible for pollen-specific gene expression.


Crop Protection | 2003

High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenée) under field conditions

Gong-Yin Ye; Hongwei Yao; Qingyao Shu; Xiongying Cheng; C. Hu; Yingwu Xia; Mingwei Gao; Illimar Altosaar

Abstract Two transgenic rice (Oryza satica L.) lines, KMD1 and KMD2, containing a synthetic cry1Ab gene from Bacillus thuringiensis Berliner, were evaluated for resistance to the rice leaffolder (RLF), Cnaphalocrocis medinalis (Guenee) under field conditions for 3 years in Zhejiang Province, China. Both KMD1 and KMD2 exhibited high and stable resistance against natural infestations by the RLF, and showed no symptoms of damaged leaves throughout the rice-growing season. In contrast, the untransformed parental control line (Xiushui 11) showed serious RLF damage symptoms not only in untreated plots, but also in plots treated once with chemical insecticides. These results demonstrate that both KMD1 and KMD2 have potential for protecting rice from the RLF damage.


Plant Molecular Biology | 1990

CHARACTERIZATION OF A POLLEN-SPECIFIC GENE FAMILY FROM BRASSICA-NAPUS WHICH IS ACTIVATED DURING EARLY MICROSPORE DEVELOPMENT

Diego Albani; Laurian S. Robert; Pauline A. Donaldson; Illimar Altosaar; Paul G. Arnison; Steven F. Fabijanski

In this paper we describe the isolation and characterization of a genomic clone (Bp4) from Brassica napus which contains three members of a pollen-specific multigene family. This family is composed of 10 to 15 closely related genes which are expressed in early stages of microspore development. The complete nucleotide sequence of the clone Bp4 and of three homologous cDNA clones is reported. One of the genes (Bp4B) contained in the genomic clone is believed to be non-functional because of sequence rearrangements in its 5′ region and intron splicing sites. The remaining genes (Bp4A and Bp4C), as well as the cDNA clones, appear to code for small proteins of unique structure. Three different types of proteins can be predicted as a result of the deletion of carboxy or amino terminal portions of a conserved core protein. These proteins all share a common alternation of hydrophobic and hydrophilic domains. A fragment of the genomic clone containing the gene Bp4A, as well as the non-functional gene Bp4B, was introduced into tobacco plants via Agrobacterium-mediated transformation. The functional gene Bp4A is expressed in transgenic tobacco plants and shows spatial and temporal regulation consistent with the expression patterns seen in Brassica napus.


Vaccine | 1999

Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco.

E.S Tackaberry; Anil K. Dudani; Fiona Prior; M Tocchi; Ravinder Sardana; Illimar Altosaar; Peter R. Ganz

Plant seeds offer unique opportunities for the production and delivery of oral subunit vaccines. We have used the immunodominant glycoprotein B complex of human cytomegalovirus (HCMV), introduced into tobacco plants, as a model system for studying the merit of this promising approach. Given the advantages of expressing proteins in seeds, a novel expression vector was developed incorporating regulatory sequences of glutelin, the major rice seed storage protein, to direct synthesis of recombinant glycoprotein B. Analysis of genomic DNA of 28 selected tobacco transformants by PCR amplification showed that 71% harboured the gB cDNA, a finding further documented by Southern blotting. Specific immunoassays of protein extracts from seeds of positive plants showed that all were producing antigenic glycoprotein B at levels ranging from 70-146 ng/mg extracted protein. In addition, similarity with native glycoprotein B produced in HCMV-infected cells was also demonstrated by inhibition of immunofluorescence on HCMV-infected human fibroblasts. These data are the first to report the expression of an immunodominant antigen of HCMV in plant tissues, indicating the fidelity with which this very large heterologous viral glycoprotein can be synthesized in this model system.


BMC Microbiology | 2013

Human milk metagenome: a functional capacity analysis

Tonya L. Ward; Sergey Hosid; Ilya Ioshikhes; Illimar Altosaar

BackgroundHuman milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk.ResultsThe bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P < 0.05). The human milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes.ConclusionsOur results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human milk metagenome are warranted.


Plant Cell Reports | 2000

Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner

Thierry Leroy; A.M. Henry; Monique Royer; Illimar Altosaar; Roger Frutos; Daniel Duris; René Philippe

Abstract A synthetic version of the cry1Ac gene of Bacillus thuringiensis has been used for the transformation of coffee species (Coffea canephora and C. arabica) to confer resistance to an important pest, the coffee leaf miner (Perileucoptera coffeella and other Leucoptera spp). Somatic embryos were co-cultivated with the LBA4404 strain of Agrobacterium tumefaciens containing the cry1Ac gene. More than 100 transformed plants from independent transformation events were obtained for each coffee genotype. The integration and expression of the cry1Ac gene was studied, and effective resistance of transgenic plants against leaf miner was verified in bioassays with the insects. These plants could represent a good opportunity to analyse the impact of genetic engineering of perennial crops for sustainable resistance to an obligate endocarpic pest using a B. thuringiensis insecticidal protein.


Theoretical and Applied Genetics | 2002

Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice

G. Wu; Hairui Cui; Gong-Yin Ye; Yingwu Xia; Ravinder Sardana; Xiongying Cheng; Yi Li; Illimar Altosaar; Qingyao Shu

Abstract The inheritance and expression patterns of the cry1Ab gene were studied in the progenies derived from different Bt (Bacillus thuringiensis) transgenic japonica rice lines under field conditions. Both Mendelian and distorted segregation ratios were observed in some selfed and crossed F2 populations. Crosses between japonica intra-subspecies had no significant effect on the segregation ratios of the cry1Ab gene, but crossing between japonica and indica inter-subspecies led to distorted segregation of the cry1Ab gene in the F2 population. Field-release experiments indicated that the cry1Ab gene was stably transmitted in an intact manner via successive sexual generations, and the concentration of the Cry1Ab protein was kept quantitatively stable up to the R6 generation. The cry1Ab gene, driven by the maize ubiquitin promoter, displayed certain kinds of spatial and temporal expression patterns under field conditions. The content of the Cry1Ab protein varied in different tissues of the main stems, the primary tillers and the secondary tillers. Higher levels of the Cry1Ab protein were found in the stems, leaves and leaf sheaths than in the roots, while the lowest level was detected in grains at the maturation stage. The content of the Cry1Ab protein in the leaves peaked at the booting stage and was lowest at the heading stage. Furthermore, the Cry1Ab content of cry1Ab expression in different tissues of transgenic rice varied individually with temperature.


Plant Cell Reports | 1996

Construction and rapid testing of synthetic and modified toxin gene sequences CryIA (b&c) by expression in maize endosperm culture

Rayinder Sardana; Stefan Dukiandjiev; Marc Giband; Xiongying Cheng; Kyra Cowan; Connie Sauder; Illimar Altosaar

SummaryThe synthesis of two modified genes, Cry IA(b) and CryIA(c), each consisting of 1845 bp, is described in detail. The genes were synthesized using an improved PCR procedure based on recursive principles. The synthetic CryIA(c) gene was put under the control of a maize ubiquitin promoter. This construct was tested in a maize endosperm-derived suspension culture system. The use of maize endosperm culture as a quick and efficient system to test the activity of synthetic genes is described.

Collaboration


Dive into the Illimar Altosaar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge