Ilmar Kotta
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ilmar Kotta.
Helgoland Marine Research | 2006
Jonne Kotta; Ilmar Kotta; Mart Simm; Ain Lankov; Velda Lauringson; Arno Põllumäe; Henn Ojaveer
Population dynamics and ecological impacts of the cirriped Balanus improvisus, the polychaete Marenzelleria neglecta and the cladoceran Cercopagis pengoi were investigated in the north-eastern Baltic Sea. After an increase during the first decade of invasion, the density of M. neglecta and C. pengoi declined afterwards. The studied abiotic environmental variables did not explain the interannual variability in the seasonal cycles of M. neglecta and C. pengoi indicating that the species are at their initial phase of invasion. The population dynamics of B. improvisus was best described by water temperature. B. improvisus promoted the growth of the green alga Enteromorpha intestinalis. M. neglecta enhanced the content of sediment chlorophyll a and reduced growth and survival of the polychaete Hediste diversicolor and growth of the amphipod Monoporeia affinis. Concurrent with the invasion of C. pengoi the abundance of small-sized cladocerans declined, especially above the thermocline. C. pengoi had become an important food for nine-spined stickleback, bleak, herring and smelt.
Hydrobiologia | 2006
Jonne Kotta; Helen Orav-Kotta; Tiina Paalme; Ilmar Kotta; Henn Kukk
The in situ grazing experiments were performed in the shallow water rocky habitat of the northern Baltic Sea during ice-free season 2002. In the experiments the effects of algal species and choice on the grazing of the mesoherbivores Idotea baltica (Pallas) and Gammarus oceanicus Segerstrale were tested. Salinity, temperature, concentration of nutrients in water and macroalgae and net production of macroalgae were considered as random effects in the analysis. The invertebrate feeding rate was mainly a function of the net photosynthetic activity of Pylaiella littoralis (L.) Kjellman and Fucus vesiculosus L. Feeding rate increased significantly with decreasing algal photosynthetic activity. When the two algal species were incubated together invertebrates fed primarily on P. littoralis. Low selectivity towards P. littoralis coincided with its high photosynthetic activity. The presence of F. vesiculosus did not modify the invertebrate feeding on P. littoralis. The results indicated that (1) the grazing on F. vesiculosus depended on the availability of P. littoralis, (2) the photosynthetic activity of algae explained the best the variation in grazing rate and (3) the grazers are not likely to control the early outbreak of filamentous algae in the northern Baltic Sea by avoiding young and photosynthetically active algae. The likely mechanism behind the relationship is that the increased photosynthetic activity of macroalgae coincides with their higher resistance to herbivory.
Hydrobiologia | 2004
Jonne Kotta; Mart Simm; Ilmar Kotta; Inga Kanošina; Kalle Kallaste; Tiit Raid
Phytoplankton, mesozooplankton, mysids and fish larvae were studied during 15–29 annual cycles measured weekly to monthly in Parnu Bay, the Gulf of Riga. The monthly variability of the biological data was related to temperature, ice conditions, salinity, influx of nutrients, the North Atlantic Oscillation (NAO) index, cloudiness and solar activity. Phytoplankton development was mainly a function of the NAO index. For the whole study period the abundance of zooplankton increased with increasing water temperature and solar activity. Significant correlations between phytoplankton and zooplankton densities were found until 1990. After the invasion of the predatory cladoceran Cercopagis pengoi in 1991, the zooplankton community was likely to be regulated by the introduced species rather than phytoplankton dynamics. The increased abundances of rotifers and copepods triggered the increase in mysid densities. The development of herring larvae was positively affected by the high density of copepods and rotifers but also by increased eutrophication. Until 1990 there was no significant relationship between the density of zooplankton and herring larvae. A negative relationship between the density of zooplankton and herring larvae in the 1990s suggests that the major shift in zooplankton community resulted in food limitation for herring larvae. The results indicated that (1) atmospheric processes in the northern Atlantic explain a large part of the interannual variation of the local phytoplankton stock, (2) trophic interactions control the development of pelagic communities at higher trophic levels, and (3) the introduction of an effective intermediate predator has repercussions for the whole pelagic food web in Parnu Bay.
Hydrobiologia | 2007
Jonne Kotta; Velda Lauringson; Ilmar Kotta
The relationships between the concentration of water nutrients and the biomass of benthic invertebrate feeding guilds were examined at 46 sites in the northern Baltic Sea during 1993–2003. We analysed whether and how degree of exposure, presence of fronts, salinity, hypoxia, nutrient concentrations, depth, sediment type and structure of invertebrate communities contributed to these relationships. In general macrozoobenthos did not respond to the changing nutrient concentrations in the areas that were regularly impacted by fronts (river estuaries, bank slopes, straits). Macrobenthic species diversity, depth, 11-year average of nutrient concentration and sediment type explained best how strong the nutrient-invertebrate relationships were. The deposit feeders, that inhabited more diverse communities, were less sensitive to the increased concentration of nutrients than those in less diverse communities. On the other hand, the sensitivity of suspension feeders to rising nutrient load increased with benthic diversity. The response of macrozoobenthos to nitrogen level decreased with increasing depth. Our data did not support the hypothesis that there was a significant difference in the occurrence of nutrient-invertebrate relationships between hypoxic and normoxic conditions. The probability of finding negative nutrient-invertebrate relationships increased with depth. The results pointed to nitrogen limitation in the coarse and fine sediments and phosphorus limitation in the mixed sediments. Increased nitrogen values strengthened the response of suspension feeders to the concentration of phosphorus. Increasing phosphorus level dampened the relationships between benthic functions and concentration of phosphorus. This study confirmed that depth and sediment type were the best regularly monitored abiotic variables that could be used to determine the type areas within the northern Baltic Sea in sensu the European Community Water Framework Directive. As the nutrient-invertebrate relationships were significantly modified by macrobenthic diversity, the environmental classification should incorporate specific biological measures such as benthic diversity in order to better describe the quality status of the water body.
Annales Zoologici Fennici | 2011
Leili Järv; Jonne Kotta; Ilmar Kotta; Tiit Raid
To date the studies that link community structure of benthic invertebrates with fish feeding are rare as well as factors that are behind this feeding selectivity are poorly known. In this study, we related invertebrate species composition, their dominance structure and fish biological characteristics to the feeding selectivity and overlap of the native flounder, perch and the invasive round goby in Muuga Bay, the Baltic Sea. Species composition and proportion of benthic invertebrates in the diet of fishes differed from what was available in the field. Except for the round goby, the studied fishes preferred small and mobile invertebrates over large bivalves. However, diet of the studied species, namely the round goby and flounder overlapped. Besides, perch preyed on young stages of the round goby indicating that the introduction of round goby may negatively affect flounder but positively perch.
PLOS ONE | 2015
Jonne Kotta; Katarina Oganjan; Velda Lauringson; Merli Pärnoja; Ants Kaasik; Liisa Rohtla; Ilmar Kotta; Helen Orav-Kotta
Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.
Scientific Reports | 2018
Jonne Kotta; Thomas Wernberg; H. Jänes; Ilmar Kotta; Kristiina Nurkse; Merli Pärnoja; Helen Orav-Kotta
The escalating spread of invasive species increases the risk of disrupting the pathways of energy flow through native ecosystems, modify the relative importance of resource (‘bottom-up’) and consumer (‘top-down’) control in food webs and thereby govern biomass production at different trophic levels. The current lack of understanding of interaction cascades triggered by non-indigenous species underscores the need for more basic exploratory research to assess the degree to which novel species regulate bottom-up and/or top down control. Novel predators are expected to produce the strongest effects by decimating consumers, and leading to the blooms of primary producers. Here we show how the arrival of the invasive crab Rhithropanopeus harrisii into the Baltic Sea – a bottom-up controlled ecosystem where no equivalent predators ever existed – appeared to trigger not only strong top-down control resulting in a decline in richness and biomass of benthic invertebrates, but also an increase in pelagic nutrients and phytoplankton biomass. Thus, the addition of a novel interaction – crab predation – to an ecosystem has a potential to reduce the relative importance of bottom-up regulation, relax benthic-pelagic coupling and reallocate large amounts of nutrients from benthic to pelagic processes, resulting in a regime shift to a degraded ecosystem state.
International Journal of Remote Sensing | 2018
Ele Vahtmäe; Jonne Kotta; Helen Orav-Kotta; Ilmar Kotta; Merli Pärnoja; Tiit Kutser
ABSTRACT Photosynthetic pigments may indicate the health and productivity of vegetation and thereby are among the most important targets of the remote-sensing science. We studied the relationship between macroalgae pigment concentration measured in situ and spectral reflectance, to develop predictive remote-sensing methods for macroalgal pigments. The measurements of spectral reflectance of macroalgae were made using both a field portable spectrometer Ramses built by TriOS GmbH (Germany) and a laboratory hyperspectral imaging device HySpex built by Norsk Elektro Optikk (Norway). Our results showed that differences in total chlorophyll (Chl-a + b) concentrations resulted in the consistent change of spectral reflectance for studied brown (Fucus vesiculosus) and green (Cladophora glomerata, Ulva intestinalis) macroalgae species. Charophytes (Chara aspera, Chara horrida) were also studied, and the relationship was much weaker for this taxon. If spectral indices predicted relatively well the concentration of Chl-a + b (R2 = 0.64–0.73) and the carotenoid to total chlorophyll ratio (Car:Chl-a + b, R2 = 0.80) across the five studied macroalgae species, then the concentration of chlorophyll a (Chl-a), chlorophyll b (Chl-b), and carotenoids (Car) were more difficult to model (R2 = 0.004–0.51). The HySpex imaging system yielded systematically better results in predicting pigment concentrations compared to the Ramses spectroradiometer. By using traditional assessment of pigment concentration along with the Hyspex imaging device, we were able to build models with a capability to predict the spatial patterns of pigment concentration for Baltic Sea macroalgae.
2008 IEEE/OES US/EU-Baltic International Symposium | 2008
Jonne Kotta; Kristjan Herkül; Ilmar Kotta; Helen Orav-Kotta; Robert Aps
The effect of dredging on the biomass structure of benthic invertebrate communities was examined at 9 sites in the northeastern Baltic Sea during 2002-2007. We analyzed whether and how bottom topography, depth and sediment type contributed to these relationships. In general, the effects of dredging on benthic invertebrates were weak. Dredging clearly increased the biomass of bivalves but the communities recovered in about a year. Bottom topography affected the response of invertebrates to dredging. Flat bottoms were more sensitive to dredging compared to sites situating on slopes. Spatial modelling was proved as a useful tool to predict spatial variability in the effects of dredging on benthic invertebrate communities.
Archive | 2008
Jonne Kotta; Velda Lauringson; Georg Martin; Mart Simm; Ilmar Kotta; Kristjan Herkül; Henn Ojaveer