Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilnour Ourmanov is active.

Publication


Featured researches published by Ilnour Ourmanov.


Nature | 2012

Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys

Dan H. Barouch; Jinyan Liu; Hualin Li; Lori F. Maxfield; Peter Abbink; Diana M. Lynch; M. Justin Iampietro; Adam SanMiguel; Michael S. Seaman; Guido Ferrari; Donald N. Forthal; Ilnour Ourmanov; Vanessa M. Hirsch; Angela Carville; Keith G. Mansfield; Donald Stablein; Maria G. Pau; Hanneke Schuitemaker; Jerald C. Sadoff; Erik Billings; Mangala Rao; Merlin L. Robb; Jerome H. Kim; Mary Marovich; Jaap Goudsmit; Nelson L. Michael

Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIVSME543 Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIVMAC251 challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.


Journal of Virology | 2000

Comparative Efficacy of Recombinant Modified Vaccinia Virus Ankara Expressing Simian Immunodeficiency Virus (SIV) Gag-Pol and/or Env in Macaques Challenged with Pathogenic SIV

Ilnour Ourmanov; Charles R. Brown; Bernard Moss; Miles W. Carroll; Linda S. Wyatt; Liuobov Pletneva; Simoy Goldstein; David Venzon; Vanessa M. Hirsch

ABSTRACT Prior studies demonstrated that immunization of macaques with simian immunodeficiency virus (SIV) Gag-Pol and Env recombinants of the attenuated poxvirus modified vaccinia virus Ankara (MVA) provided protection from high levels of viremia and AIDS following challenge with a pathogenic strain of SIV (V. M. Hirsch et al., J. Virol. 70:3741–3752, 1996). This MVA-SIV recombinant expressed relatively low levels of the Gag-Pol portion of the vaccine. To optimize protection, second-generation recombinant MVAs that expressed high levels of either Gag-Pol (MVA-gag-pol) or Env (MVA-env), alone or in combination (MVA-gag-pol-env), were generated. A cohort of 24 macaques was immunized with recombinant or nonrecombinant MVA (four groups of six animals) and was challenged with 50 times the dose at which 50% of macaques are infected with uncloned pathogenic SIVsmE660. Although all animals became infected postchallenge, plasma viremia was significantly reduced in animals that received the MVA-SIV recombinant vaccines as compared with animals that received nonrecombinant MVA (P = 0.0011 by repeated-measures analysis of variance). The differences in the degree of virus suppression achieved by the three MVA-SIV vaccines were not significant. Most importantly, the reduction in levels of viremia resulted in a significant increase in median (P < 0.05 by Students t test) and cumulative (P = 0.010 by log rank test) survival. These results suggest that recombinant MVA has considerable potential as a vaccine vector for human AIDS.


Journal of Virology | 2000

Immunization with a Modified Vaccinia Virus Expressing Simian Immunodeficiency Virus (SIV) Gag-Pol Primes for an Anamnestic Gag-Specific Cytotoxic T-Lymphocyte Response and Is Associated with Reduction of Viremia after SIV Challenge

Aruna Seth; Ilnour Ourmanov; Jörn E. Schmitz; Marcelo J. Kuroda; Michelle A. Lifton; Christine E. Nickerson; Linda S. Wyatt; Miles W. Carroll; Bernard Moss; David Venzon; Norman L. Letvin; Vanessa M. Hirsch

ABSTRACT The immunogenicity and protective efficacy of a modified vaccinia virus Ankara (MVA) recombinant expressing the simian immunodeficiency virus (SIV) Gag-Pol proteins (MVA-gag-pol) was explored in rhesus monkeys expressing the major histocompatibility complex (MHC) class I allele, MamuA*01. Macaques received four sequential intramuscular immunizations with the MVA-gag-polrecombinant virus or nonrecombinant MVA as a control. Gag-specific cytotoxic T-lymphocyte (CTL) responses were detected in all MVA-gag-pol-immunized macaques by both functional assays and flow cytometric analyses of CD8+ T cells that bound a specific MHC complex class I-peptide tetramer, with levels peaking after the second immunization. Following challenge with uncloned SIVsmE660, all macaques became infected; however, viral load set points were lower in MVA-gag-pol-immunized macaques than in the MVA-immunized control macaques. MVA-gag-pol-immunized macaques exhibited a rapid and substantial anamnestic CTL response specific for the p11C, C-M Gag epitope. The level at which CTL stabilized after resolution of primary viremia correlated inversely with plasma viral load set point (P = 0.03). Most importantly, the magnitude of reduction in viremia in the vaccinees was predicted by the magnitude of the vaccine-elicited CTL response prior to SIV challenge.


Journal of Virology | 2000

Wide Range of Viral Load in Healthy African Green Monkeys Naturally Infected with Simian Immunodeficiency Virus

Simoy Goldstein; Ilnour Ourmanov; Charles R. Brown; Brigitte Beer; William R. Elkins; Ronald J. Plishka; Alicia Buckler-White; Vanessa M. Hirsch

ABSTRACT The distribution and levels of simian immunodeficiency virus (SIV) in tissues and plasma were assessed in naturally infected African green monkeys (AGM) of the vervet subspecies (Chlorocebus pygerythrus) by limiting-dilution coculture, quantitative PCR for viral DNA and RNA, and in situ hybridization for SIV expression in tissues. A wide range of SIV RNA levels in plasma was observed among these animals (<1,000 to 800,000 copies per ml), and the levels appeared to be stable over long periods of time. The relative numbers of SIV-expressing cells in tissues of two monkeys correlated with the extent of plasma viremia. SIV expression was observed in lymphoid tissues and was not associated with immunopathology. Virus-expressing cells were observed in the lamina propria and lymphoid tissue of the gastrointestinal tract, as well as within alveolar macrophages in the lung tissue of one AGM. The range of plasma viremia in naturally infected AGM was greater than that reported in naturally infected sooty mangabeys. However, the degree of viremia in some AGM was similar to that observed during progression to AIDS in human immunodeficiency virus-infected individuals. Therefore, containment of viremia is an unlikely explanation for the lack of pathogenicity of SIVagm in its natural host species, AGM.


Journal of Virology | 2007

Unique Pathology in Simian Immunodeficiency Virus-Infected Rapid Progressor Macaques Is Consistent with a Pathogenesis Distinct from That of Classical AIDS

Charles R. Brown; Meggan Czapiga; Juraj Kabat; Que Dang; Ilnour Ourmanov; Yoshiaki Nishimura; Malcolm A. Martin; Vanessa M. Hirsch

ABSTRACT Simian immunodeficiency virus (SIV) infection of macaques and human immunodeficiency virus type 1 (HIV-1) infection of humans result in variable but generally fatal disease outcomes. Most SIV-infected macaques progress to AIDS over a period of 1 to 3 years, in the face of robust SIV-specific immune responses (conventional progressors [CP]). A small number of SIV-inoculated macaques mount transient immune responses and progress rapidly to AIDS (rapid progressors [RP]). We speculated that the underlying pathogenic mechanisms may differ between RP and CP macaques. We compared the pathological lesions, virus loads, and distribution of virus and target cells in SIVsmE660- or SIVsmE543-infected RP and CP rhesus macaques at terminal disease. RP macaques developed a wasting syndrome characterized by severe SIV enteropathy in the absence of opportunistic infections. In contrast, opportunistic infections were commonly observed in CP macaques. RP and CP macaques showed distinct patterns of CD4+ T-cell depletion, with a selective loss of memory cells in RP macaques and a generalized (naive and memory) CD4 depletion in CP macaques. In situ hybridization demonstrated higher levels of virus expression in lymphoid tissues (P < 0.001) of RP macaques and a broader distribution to include many nonlymphoid tissues. Finally, SIV was preferentially expressed in macrophages in RP macaques whereas the primary target cells in CP macaques were T lymphocytes at end stage disease. These data suggest distinct pathogenic mechanisms leading to the deaths of these two groups of animals, with CP macaques being more representative of HIV-induced AIDS in humans.


Journal of Virology | 2000

Recombinant Modified Vaccinia Virus Ankara Expressing the Surface gp120 of Simian Immunodeficiency Virus (SIV) Primes for a Rapid Neutralizing Antibody Response to SIV Infection in Macaques

Ilnour Ourmanov; Miroslawa Bilska; Vanessa M. Hirsch; David C. Montefiori

ABSTRACT Neutralizing antibodies were assessed before and after intravenous challenge with pathogenic SIVsmE660 in rhesus macaques that had been immunized with recombinant modified vaccinia virus Ankara expressing one or more simian immunodeficiency virus gene products (MVA-SIV). Animals received either MVA-gag-pol, MVA-env, MVA-gag-pol-env, or nonrecombinant MVA. Although no animals were completely protected from infection with SIV, animals immunized with recombinant MVA-SIV vaccines had lower virus loads and prolonged survival relative to control animals that received nonrecombinant MVA (I. Ourmanov et al., J. Virol. 74:2740–2751, 2000). Titers of neutralizing antibodies measured with the vaccine strain SIVsmH-4 were low in the MVA-env and MVA-gag-pol-env groups of animals and were undetectable in the MVA-gag-pol and nonrecombinant MVA groups of animals on the day of challenge (4 weeks after final immunization). Titers of SIVsmH-4-neutralizing antibodies remained unchanged 1 week later but increased approximately 100-fold 2 weeks postchallenge in the MVA-env and MVA-gag-pol-env groups while the titers remained low or undetectable in the MVA-gag-pol and nonrecombinant MVA groups. This anamnestic neutralizing antibody response was also detected with T-cell-line-adapted stocks of SIVmac251 and SIV/DeltaB670 but not with SIVmac239, as this latter virus resisted neutralization. Most animals in each group had high titers of SIVsmH-4-neutralizing antibodies 8 weeks postchallenge. Titers of neutralizing antibodies were low or undetectable until about 12 weeks of infection in all groups of animals and showed little or no evidence of an anamnestic response when measured with SIVsmE660. The results indicate that recombinant MVA is a promising vector to use to prime for an anamnestic neutralizing antibody response following infection with primate lentiviruses that cause AIDS. However, the Env component of the present vaccine needs improvement in order to target a broad spectrum of viral variants, including those that resemble primary isolates.


Immunity | 2014

Tissue Myeloid Cells in SIV-Infected Primates Acquire Viral DNA through Phagocytosis of Infected T Cells

Nina Calantone; Fan Wu; Zachary Klase; Claire Deleage; Molly R. Perkins; Kenta Matsuda; Elizabeth A. Thompson; Alexandra M. Ortiz; Carol L. Vinton; Ilnour Ourmanov; Karin Loré; Jacob D. Estes; Vanessa M. Hirsch; Jason M. Brenchley

The viral accessory protein Vpx, expressed by certain simian and human immunodeficiency viruses (SIVs and HIVs), is thought to improve viral infectivity of myeloid cells. We infected 35 Asian macaques and African green monkeys with viruses that do or do not express Vpx and examined viral targeting of cells in vivo. While lack of Vpx expression affected viral dynamics in vivo, with decreased viral loads and infection of CD4⁺ T cells, Vpx expression had no detectable effect on infectivity of myeloid cells. Moreover, viral DNA was observed only within myeloid cells in tissues not massively depleted of CD4⁺ T cells. Myeloid cells containing viral DNA also showed evidence of T cell phagocytosis in vivo, suggesting that their viral DNA may be attributed to phagocytosis of SIV-infected T cells. These data suggest that myeloid cells are not a major source of SIV in vivo, irrespective of Vpx expression.


Journal of Virology | 2005

Plateau levels of viremia correlate with the degree of CD4+-T-cell loss in simian immunodeficiency virus SIVagm-infected pigtailed macaques: variable pathogenicity of natural SIVagm isolates.

Simoy Goldstein; Ilnour Ourmanov; Charles R. Brown; Ronald J. Plishka; Alicia Buckler-White; Russell Byrum; Vanessa M. Hirsch

ABSTRACT Simian immunodeficiency virus from African green monkeys (SIVagm) results in asymptomatic infection in its natural host species. The virus is not inherently apathogenic, since infection of pigtailed (PT) macaques (Macaca nemestrina) with one isolate of SIVagm results in an immunodeficiency syndrome characterized by progressive CD4+-T-cell depletion and opportunistic infections. This virus was passaged once in a PT macaque and, thus, may not be entirely reflective of the virulence of the parental strain. The goal of the present study was to assess the pathogenicity of the PT-passaged isolate (SIVagm9063) and two primary SIVagm isolates in PT macaques, including the parental strain of the PT-passaged variant. Infection of macaques with any of the three isolates resulted in high levels of primary plasma viremia by 1 week after inoculation. Viremia was quickly controlled following infection with SIVagm155; these animals have maintained CD4+-T-cell subsets and remain healthy. The plateau levels among SIVagm90- and SIVagm9063-inoculated macaques varied widely from 100 to 1 million copies/ml of plasma. Three of four animals from each of these groups progressed to AIDS. Setpoint viremia and the degree of CD4+-T-cell loss at 6 months postinfection were not significantly different between macaques inoculated with SIVagm90 and SIVagm9063. However these parameters were significantly different in SIVagm155-inoculated macaques (P values of <0.01). Considering all the macaques, the degree of CD4+-T-cell loss by 6 months postinfection correlated with the plateau levels of viremia. Thus, similar to SIVsm/mac infection of macaques and human AIDS, viral load is an excellent prognostic indicator of disease course. The inherent pathogenicity of natural SIVagm isolates varies, but such natural isolates are capable of inducing AIDS in macaques without prior macaque passage.


Journal of Virology | 2006

Comparison of Simian Immunodeficiency Virus SIVagmVer Replication and CD4+ T-Cell Dynamics in Vervet and Sabaeus African Green Monkeys

Simoy Goldstein; Charles R. Brown; Ilnour Ourmanov; Ivona Pandrea; Alicia Buckler-White; Christopher Erb; Jayashree S. Nandi; Gabriel J. Foster; Patrick Autissier; Jörn E. Schmitz; Vanessa M. Hirsch

ABSTRACT The simian immunodeficiency viruses (SIV) naturally infect a wide range of African primates, including African green monkeys (AGM). Despite moderate to high levels of plasma viremia in naturally infected AGM, infection is not associated with immunodeficiency. We recently reported that SIVagmVer90 isolated from a naturally infected vervet AGM induced AIDS following experimental inoculation of pigtailed macaques. The goal of the present study was to evaluate the replication of this isolate in two species of AGM, sabaeus monkeys (Chlorocebus sabaeus) and vervets (C. pygerythrus). Inoculation of sabaeus AGM with SIVagmVer90 resulted in low and variable primary and set-point viremia (<102 to 104 copies/ml). In contrast, inoculation of vervet AGM with either SIVagmVer90 or blood from a naturally infected vervet (Ver1) resulted in high primary viremia and moderate plateau levels, similar to the range seen in naturally infected vervets from this cohort. CD4+ T cells remained stable throughout infection, even in AGM with persistent high viremia. Despite the lack of measurable lymphadenopathy, infection was associated with an increased number of Ki-67+ T cells in lymph node biopsies, consistent with an early antiviral immune response. The preferential replication of SIVagmVer in vervet versus sabaeus AGM shows that it is critical to match AGM species and SIV strains for experimental models of natural SIV infection.


Journal of Virology | 2004

Immune Failure in the Absence of Profound CD4+ T-Lymphocyte Depletion in Simian Immunodeficiency Virus-Infected Rapid Progressor Macaques

Vanessa M. Hirsch; Sampa Santra; Simoy Goldstein; Ronald J. Plishka; Alicia Buckler-White; Aruna Seth; Ilnour Ourmanov; Charles R. Brown; Ronald E. Engle; David C. Montefiori; Jennifer Glowczwskie; Kevin J. Kunstman; Steven M. Wolinsky; Norman L. Letvin

ABSTRACT A fraction of simian immunodeficiency virus (SIV)-infected macaques develop rapidly progressive disease in the apparent absence of detectable SIV-specific antibody responses. To characterize the immunopathogenesis of this syndrome, we studied viral load, CD4+ T-lymphocyte numbers as well as cellular and humoral immune responses to SIV and other exogenous antigens in four SIVsm-infected rhesus macaques that progressed to AIDS 9 to 16 weeks postinoculation. Each of these animals exhibited high levels of viremia but showed relatively preserved CD4 T lymphocytes in blood and lymphoid tissues at the time of death. Transient SIV-specific antibody responses and cytotoxic T-lymphocyte responses were observed at 2 to 4 weeks postinoculation. Two of the macaques that were immunized sequentially with tetanus toxoid and hepatitis A virus failed to develop antibody to either antigen. These studies show that the SIV-infected rapid progressor macaques initially mounted an appropriate but transient cellular and humoral immune response. The subsequent immune defect in these animals appeared to be global, affecting both cellular and humoral immunity to SIV as well as immune responses against unrelated antigens. The lack of CD4 depletion and loss of humoral and cellular immune responses suggest that their immune defect may be due to an early loss in T helper function.

Collaboration


Dive into the Ilnour Ourmanov's collaboration.

Top Co-Authors

Avatar

Vanessa M. Hirsch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alicia Buckler-White

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles R. Brown

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ronald J. Plishka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fan Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sonya Whitted

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenta Matsuda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Simoy Goldstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert Goeken

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jason M. Brenchley

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge