Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilva D. Rupenthal is active.

Publication


Featured researches published by Ilva D. Rupenthal.


International Journal of Pharmaceutics | 2011

Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release

Ilva D. Rupenthal; Colin R. Green; Raid G. Alany

Conventional eye drops can result in poor drug bioavailability due to the unique ocular anatomy and physiology. Ion-activated in situ gelling systems are able to crosslink with cations present in the tear fluid, therefore forming a gel on the ocular surface, which results in prolonged corneal contact time. The present study compared a number of anionic polysaccharides (gellan gum, xanthan gum, carrageenan and alginate) to an uncharged (HPMC) and a positively charged (chitosan) polymer system with emphasis on the gelling behaviour, rheological and textural properties, gel microstructure, contact angle and in vitro release characteristics. All systems exhibited physically entangled polymer networks that were able to disentangle upon shear stress and significantly prolonged the in vitro release of a model hydrophilic drug compared to a solution. While systems based on HPMC and chitosan showed no structural changes upon addition of cations, formulations based on gellan gum and carrageenan demonstrated a remarkable increase in viscosity, pseudoplasticity and hardness upon addition of Ca(2+) and K(+) respectively. This renders them favourable for ocular use as they would gel once in contact with the cations of the tear fluid, thus reducing nasolacrimal drainage, but would thin upon shearing, preventing ocular irritation and therefore induced lacrimation.


Drug Discovery Today | 2013

Injectable implants for the sustained release of protein and peptide drugs.

Priyanka Agarwal; Ilva D. Rupenthal

Protein and peptide macromolecules have emerged as promising therapeutic agents in recent years. However, their delivery to the target site can be challenging owing to their susceptibility to denaturation and degradation, short half-life and, therefore, poor bioavailability. In situ-forming implants present an attractive parenteral delivery platform for proteins and peptides because of their ease of application, sustained-release properties, tissue biocompatibility and simple manufacture. In this review, we discuss the various mechanisms by which polymer systems assemble in situ to form implant devices for sustained release of therapeutic macromolecules, and highlight recent advances in polymer systems that gel in response to a combination of these mechanisms. Finally, we examine release mechanisms, marketed products and limitations of injectable implants.


Journal of Controlled Release | 2014

Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems.

M. Naveed Yasin; Darren Svirskis; Ali Seyfoddin; Ilva D. Rupenthal

Efficient drug delivery to the posterior segment of the eye is a challenging task for the formulation scientist. Current treatment of chronic back-of-the-eye conditions requires frequent intravitreal injections of drug containing solutions due to the short half-life and limited tissue permeation of the administered molecules. Sustained release ocular delivery systems offering reduced administration frequencies have therefore gained popularity over recent years with a few implants already on the market and many more in the pipeline. However, current implants generally release drug at a predetermined rate without the ability to alter release rates. As required drug concentrations may change over the course of treatment due to the individual patients clinical response, implants from which release rates can be tuned could optimize treatment efficacy. This article provides an overview of diseases of the posterior segment of the eye, describes currently available implants to treat such conditions and discusses advantages and disadvantages of various implant locations. Finally, stimuli-responsive drug delivery technologies that have been investigated for, or have the potential to be applied to, drug delivery to the back of the eye will be discussed. Emphasis is hereby placed on polymeric implants responsive to an electric current, light or a magnetic field to achieve tunable drug release.


Journal of Pharmacy and Pharmacology | 2014

Dendrimers for gene delivery - a potential approach for ocular therapy?

Sahil P. Chaplot; Ilva D. Rupenthal

A vast number of blinding diseases have genetic aetiologies and may be treated by molecular based therapies such as antisense oligonucleotides or short interfering RNA. However, treatment success of ocular gene therapy is highly dependent on efficient delivery of such molecules.


Investigative Ophthalmology & Visual Science | 2012

Improved corneal wound healing through modulation of gap junction communication using connexin43-specific antisense oligodeoxynucleotides.

Christina N Grupcheva; Wilda Laux; Ilva D. Rupenthal; Jennifer Jane McGhee; Charles Nj McGhee; Colin R. Green

PURPOSE Gap junctions play a major role in corneal wound healing. This study used reproducible models of corneal wound healing to evaluate the effect of a gap junction channel modulator, connexin43 (Cx43) antisense oligodeoxynucleotides (AsODN), on corneal healing dynamics. METHODS A mechanical scrape wound model was used to evaluate Cx43 AsODN penetration and initial wound reepithelialization 12 hours postsurgery. Thereafter, detailed analyses of corneal edema, inflammation, and healing were performed in an excimer laser surface ablation model. In vivo confocal microscopy determined clinical parameters (edema, haze) and cellular changes (stromal hypercellularity, reepithelialization), whereas histology and immunohistochemistry were used to quantify stromal edema, inflammation, and reepithelialization. RESULTS Cx43 AsODN penetrated through the hydrophilic stroma where the epithelium had been removed and accumulated in the basal epithelium close to the wound edge. Twelve hours after scrape wounding, Cx43 AsODN-treated eyes showed a significant reduction in wound area compared with the vehicle alone (1.59±0.37 and 2.29±0.58 mm2, respectively, P<0.01). After excimer laser ablation, stromal edema and inflammation were reduced, with endothelial structures being clearly visible, and reepithelialization rates were again increased in Cx43 AsODN-treated eyes. Histologic analysis confirmed reduced edema in the central wound site and at the periphery of treated corneas (P<0.05), whereas immunohistochemistry showed lower Cx43 levels (P<0.05), reduced myofibroblast activation, and improved epithelial basal lamina deposition in antisense-treated wounds (P<0.01). CONCLUSIONS Application of Cx43 AsODN to the cornea reduces stromal edema and inflammation, promoting faster wound closure and a more uniform repair of the epithelial basal lamina after laser ablation.


Journal of Controlled Release | 2017

Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies

Abhirup Mandal; Rohit Bisht; Ilva D. Rupenthal; Ashim K. Mitra

Abstract Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age‐related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in‐vitro and in‐vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non‐toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies. Graphical abstract Figure. No Caption available.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Sustained intravitreal delivery of connexin43 mimetic peptide by poly(d,l-lactide-co-glycolide) acid micro- and nanoparticles – Closing the gap in retinal ischaemia

Ying-Shan Chen; Colin R. Green; Kailun Wang; Helen V. Danesh-Meyer; Ilva D. Rupenthal

Recent research has shown that transient block of connexin43 (Cx43) hemichannels by mimetic peptides (MP) after retinal ischaemia inhibits uncontrolled hemichannel opening causing blood-brain barrier permeability and endothelial cell loss, and consequently provides improved retinal ganglion cell (RGC) survival. However, the highly hydrophilic character and potentially poor stability of native peptides can limit efficient delivery in a clinical setting. The present study investigated the ability of intravitreally injected Cx43 MP encapsulated into slow-release poly(lactic-co-glycolic) acid (PLGA) nano-(Nps) and microparticles (Mps) to promote RGC survival in a retinal ischaemia-reperfusion rat model. The particle size was around 113 nm (Nps) and 9 μm (Mps), respectively, with Cx43 MP entrapment efficiencies of 70% (Nps) and 97% (Mps). A triphasic in vitro release profile was observed with an initial burst of surface-bound Cx43 MP followed by slow release due to polymer erosion and further drug release at the point of complete particle breakdown, with 100% release achieved after 63 (Nps) and 112 (Mps) days, respectively. Nps showed the most promising results on both Cx43 down-regulation and RGC rescue in this acute injury model. Mps treatment, on the other hand, was unable to down regulate the initial inflammatory response possibly due to trapping of the bigger particles in the vitreous and the much slower release of Cx43 MP from these particles, but displayed a delayed effect on Cx43 regulation and RGC preservation due to the sustained release.


Progress in Retinal and Eye Research | 2016

Connexin43 in retinal injury and disease.

Helen V. Danesh-Meyer; Jie Zhang; Monica L. Acosta; Ilva D. Rupenthal; Colin R. Green

Gap junctions are specialized cell-to-cell contacts that allow the direct transfer of small molecules between cells. A single gap junction channel consists of two hemichannels, or connexons, each of which is composed of six connexin protein subunits. Connexin43 is the most ubiquitously expressed isoform of the connexin family and in the retina it is prevalent in astrocytes, Müller cells, microglia, retinal pigment epithelium and endothelial cells. Prior to docking with a neighboring cell, Connexin43 hemichannels have a low open probability as open channels constitute a large, relatively non-specific membrane pore. However, with injury and disease Connexin43 upregulation and hemichannel opening has been implicated in all aspects of secondary damage, especially glial cell activation, edema and loss of vascular integrity, leading to neuronal death. We here review gap junctions and their roles in the retina, and then focus in on Connexin43 gap junction channels in injury and disease. In particular, the effect of pathological opening of gap junction hemichannels is described, and hemichannel mediated loss of vascular integrity explained. This latter phenomenon underlies retinal pigment epithelium loss and is a common feature in several retinal diseases. Finally, Connexin43 channel roles in a number of retinal diseases including macular degeneration, glaucoma and diabetic retinopathy are considered, along with results from related animal models. A final section describes gap junction channel modulation and the ocular delivery of potential therapeutic molecules.


Journal of Neuroscience Research | 2012

Role of Gap Junctions in Chronic Pain

Ann Wu; Colin R. Green; Ilva D. Rupenthal; Gila Moalem-Taylor

Gap junctions are specialized transmembrane channels that allow rapid electrical signalling and direct intercellular communication for maintenance and coordination of normal cellular activities and homeostasis. Although gap junction channels in the nervous system mediate intercellular coupling between glial cells and between neurons, they also contribute to the spread of secondary damage and inflammation under pathological conditions. There is now evidence of the involvement of gap junctions in chronic pain caused by nervous system damage or tissue inflammation. In this Mini‐Review, we highlight recent studies demonstrating the dynamic plasticity of gap junctions in response to nervous system injury and the effects of gap junction blockade on neuronal survival and modulation of pain in animal models of neuropathic and inflammatory pain. The involvement of dorsal root ganglia and spinal cord gap junctions in mediating chronic pain and the potential for targeting connexins as a novel modality for the treatment of intractable pain syndromes arising from nervous system injury and disorders are discussed.


Drug Delivery and Translational Research | 2015

Intravitreal injection of lipoamino acid-modified connexin43 mimetic peptide enhances neuroprotection after retinal ischemia

Ying-Shan Chen; Colin R. Green; Rebecca Teague; Joshua Perrett; Helen V. Danesh-Meyer; Istvan Toth; Ilva D. Rupenthal

Optic neuropathy is associated with retinal ganglion cell (RGC) loss leading to optic nerve damage and visual impairment. Recent research has shown that transient block of connexin43 (Cx43) hemichannels by a Cx43 mimetic peptide (MP), Peptide5, delivered systemically or by intravitreal injection after retinal ischemia inhibits uncontrolled hemichannel opening to provide significantly reduced vessel leak and inflammation as well as significantly enhanced RGC survival. We have previously shown, in vitro, that a chemically modified C12-C12-Cx43 MP has a twofold greater half-life in bovine vitreous (ex vivo) than the native peptide. The present study investigated the ability of intravitreally injected, chemically modified C12-C12-Cx43 MP to further enhance RGC survival in a rat retinal ischemia-reperfusion model. Intravitreally injected native Cx43 MP or C12-C12-Cx43 MP both minimized vessel leak, reduced inflammation, and protected RGC after ischemic injury. However, the modified C12-C12-Cx43 MP, with its prolonged vitreous stability, showed significantly lower levels of Cx43 expression post-injury, with a trend towards a greater reduction in vessel leak and further RGC protection, suggesting that these molecules may be a clinically relevant neuroprotective tool in the treatment of optic neuropathy.

Collaboration


Dive into the Ilva D. Rupenthal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Huang

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Bisht

University of Auckland

View shared research outputs
Top Co-Authors

Avatar

Jie Zhang

University of Auckland

View shared research outputs
Researchain Logo
Decentralizing Knowledge