Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilya Borovok is active.

Publication


Featured researches published by Ilya Borovok.


PLOS Genetics | 2008

Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

Ronald M. Weiner; Larry E. Taylor; Bernard Henrissat; Loren Hauser; Miriam Land; Pedro M. Coutinho; Corinne Rancurel; Elizabeth Saunders; Atkinson G. Longmire; Haitao Zhang; Edward A. Bayer; Harry J. Gilbert; Frank W. Larimer; Igor B. Zhulin; Nathan A. Ekborg; Raphael Lamed; Paul M. Richardson; Ilya Borovok; Steven W. Hutcheson

The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.


Journal of Bacteriology | 2004

Transcriptional Regulation of the Staphylococcus aureus Thioredoxin and Thioredoxin Reductase Genes in Response to Oxygen and Disulfide Stress

Orit Uziel; Ilya Borovok; Rachel Schreiber; Gerald Cohen; Yair Aharonowitz

In this report we describe the cloning, organization, and promoter analysis of the Staphylococcus aureus thioredoxin (trxA) and thioredoxin reductase (trxB) genes and their transcription in response to changes in oxygen concentration and to oxidative stress compounds. Northern analysis showed that the S. aureus trxA and trxB genes were transcribed equally well in aerobic and anaerobic conditions. Several oxidative stress compounds were found to rapidly induce transcription of the trxA and trxB genes. The most pronounced effects were seen with diamide, a thiol-specific oxidant that promotes disulfide bond formation; menadione, a redox cycling agent; and tau-butyl hydroperoxide, an organic peroxide. In each case the induction was independent of the general stress sigma factor sigma(B). These studies show that the S. aureus trxA and trxB genes are upregulated following exposure to these oxidative stress agents, resulting in increased disulfide bond formation. In contrast, no effect of hydrogen peroxide on induction of the trxA and trxB genes was seen. We also show that the S. aureus thioredoxin reductase appears to be essential for growth. This observation, coupled with structural differences between the bacterial and mammalian thioredoxin reductases, suggests that it may serve as a target for the development of new antimicrobials.


PLOS ONE | 2009

Diversity and Strain Specificity of Plant Cell Wall Degrading Enzymes Revealed by the Draft Genome of Ruminococcus flavefaciens FD-1

Margret E. Berg Miller; Dionysios A. Antonopoulos; Marco T. Rincon; Mark Band; Albert Bari; Tatsiana V. Akraiko; Alvaro G. Hernandez; Jyothi Thimmapuram; Bernard Henrissat; Pedro M. Coutinho; Ilya Borovok; Sadanari Jindou; Raphael Lamed; Harry J. Flint; Edward A. Bayer; Bryan A. White

Background Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. Methodology/Principal Findings The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest levels of up-regulation. Conclusions/Significance The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components.


Cell | 2012

Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence.

Lev Rabinovich; Nadejda Sigal; Ilya Borovok; Ran Nir-Paz; Anat A. Herskovits

The DNA uptake competence (Com) system of the intracellular bacterial pathogen Listeria monocytogenes is considered nonfunctional. There are no known conditions for DNA transformation, and the Com master activator gene, comK, is interrupted by a temperate prophage. Here, we show that the L. monocytogenes Com system is required during infection to promote bacterial escape from macrophage phagosomes in a manner that is independent of DNA uptake. Further, we find that regulation of the Com system relies on the formation of a functional comK gene via prophage excision. Prophage excision is specifically induced during intracellular growth, primarily within phagosomes, yet, in contrast to classic prophage induction, progeny virions are not produced. This study presents the characterization of an active prophage that serves as a genetic switch to modulate the virulence of its bacterial host in the course of infection.


Nature Reviews Microbiology | 2015

A new perspective on lysogeny: prophages as active regulatory switches of bacteria

Ron Feiner; Tal Argov; Lev Rabinovich; Nadejda Sigal; Ilya Borovok; Anat A. Herskovits

Unlike lytic phages, temperate phages that enter lysogeny maintain a long-term association with their bacterial host. In this context, mutually beneficial interactions can evolve that support efficient reproduction of both phages and bacteria. Temperate phages are integrated into the bacterial chromosome as large DNA insertions that can disrupt gene expression, and they may pose a fitness burden on the cell. However, they have also been shown to benefit their bacterial hosts by providing new functions in a bacterium–phage symbiotic interaction termed lysogenic conversion. In this Opinion article, we discuss another type of bacterium–phage interaction, active lysogeny, in which phages or phage-like elements are integrated into the bacterial chromosome within critical genes or operons and serve as switches that regulate bacterial genes via genome excision.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors

Yakir Nataf; Liat Bahari; Hamutal Kahel-Raifer; Ilya Borovok; Raphael Lamed; Edward A. Bayer; Abraham L. Sonenshein; Yuval Shoham

Clostridium thermocellum produces a highly efficient cellulolytic extracellular complex, termed the cellulosome, for hydrolyzing plant cell wall biomass. The composition of the cellulosome is affected by the presence of extracellular polysaccharides; however, the regulatory mechanism is unknown. Recently, we have identified in C. thermocellum a set of putative σ and anti-σ factors that include extracellular polysaccharide-sensing components [Kahel-Raifer et al. (2010) FEMS Microbiol Lett 308:84–93]. These factor-encoding genes are homologous to the Bacillus subtilis bicistronic operon sigI-rsgI, which encodes for an alternative σI factor and its cognate anti-σI regulator RsgI that is functionally regulated by an extracytoplasmic signal. In this study, the binding of C. thermocellum putative anti-σI factors to their corresponding σ factors was measured, demonstrating binding specificity and dissociation constants in the range of 0.02 to 1 μM. Quantitative real-time RT-PCR measurements revealed three- to 30-fold up-expression of the alternative σ factor genes in the presence of cellulose and xylan, thus connecting their expression to direct detection of their extracellular polysaccharide substrates. Cellulosomal genes that are putatively regulated by two of these σ factors, σI1 or σI6, were identified based on the sequence similarity of their promoters. The ability of σI1 to direct transcription from the sigI1 promoter and from the promoter of celS (encodes the family 48 cellulase) was demonstrated in vitro by runoff transcription assays. Taken together, the results reveal a regulatory mechanism in which alternative σ factors are involved in regulating the cellulosomal genes via an external carbohydrate-sensing mechanism.


PLOS Genetics | 2012

Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence

Lior Lobel; Nadejda Sigal; Ilya Borovok; Eytan Ruppin; Anat A. Herskovits

Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogens metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence.


Microbiology | 1999

The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS

Peijian Zou; Ilya Borovok; Darío Ortiz de Orué Lucana; Dagmar Müller; Hildgund Schrempf

During early stages of growth, Streptomyces reticuli synthesizes a hyphae-associated, haem-containing enzyme which exhibits catalase and peroxidase activities with broad substrate specificity (CpeB). The purified dimeric enzyme (160 kDa) consists of two identical subunits. Using anti-CpeB antibodies and an expression- as well as a mini-library, the corresponding cpeB gene was identified and sequenced. It encodes a protein of 740 aa with a molecular mass of 81.3 kDa. The deduced protein shares the highest level of amino acid identity with KatG from Caulobacter crescentus and Mycobacterium tuberculosis, and PerA from Bacillus stearothermophilus. Streptomyces lividans transformants carrying cpeB and the upstream-located furS gene with its regulatory region on the bifunctional vector pWHM3 produced low or enhanced levels of CpeB in the presence or absence of Fe ions, respectively. An in-frame deletion of the major part of furS induces increased CpeB synthesis. The data imply that FurS regulates the transcription of cpeB. The deduced FurS protein is rich in histidine residues, contains a putative N-terminally situated helix-turn-helix motif and has a molecular mass of 15.1 kDa. It shares only 29% amino acid identity with the Escherichia coli ferric uptake regulator (Fur) protein, but about 64% with FurA deduced from the genomic sequences of several mycobacteria. The predicted secondary structures of FurS and FurA are highly similar and considerably divergent from those of the E. coli Fur. In contrast to some Gram-negative bacteria, within several mycobacteria an intact furA gene or a furA pseudogene is upstream of a catalase-peroxidase (katG) gene predicted to encode a functional or a non-functional (Mycobacterium leprae) enzyme. Thus the data obtained for Streptomyces reticuli are expected to serve as an additional model to elucidate the regulation of mycobacterial catalase-peroxidase genes.


Journal of Bacteriology | 2007

NrdR Controls Differential Expression of the Escherichia coli Ribonucleotide Reductase Genes

Eduard Torrents; Inna Rozman Grinberg; Batia Gorovitz-Harris; Hanna Lundström; Ilya Borovok; Yair Aharonowitz; Britt-Marie Sjöberg; Gerald Cohen

Escherichia coli possesses class Ia, class Ib, and class III ribonucleotide reductases (RNR). Under standard laboratory conditions, the aerobic class Ia nrdAB RNR genes are well expressed, whereas the aerobic class Ib nrdEF RNR genes are poorly expressed. The class III RNR is normally expressed under microaerophilic and anaerobic conditions. In this paper, we show that the E. coli YbaD protein differentially regulates the expression of the three sets of genes. YbaD is a homolog of the Streptomyces NrdR protein. It is not essential for growth and has been renamed NrdR. Previously, Streptomyces NrdR was shown to transcriptionally regulate RNR genes by binding to specific 16-bp sequence motifs, NrdR boxes, located in the regulatory regions of its RNR operons. All three E. coli RNR operons contain two such NrdR box motifs positioned in their regulatory regions. The NrdR boxes are located near to or overlap with the promoter elements. DNA binding experiments showed that NrdR binds to each of the upstream regulatory regions. We constructed deletions in nrdR (ybaD) and showed that they caused high-level induction of transcription of the class Ib RNR genes but had a much smaller effect on induction of transcription of the class Ia and class III RNR genes. We propose a model for differential regulation of the RNR genes based on binding of NrdR to the regulatory regions. The model assumes that differences in the positions of the NrdR binding sites, and in the sequences of the motifs themselves, determine the extent to which NrdR represses the transcription of each RNR operon.


Fems Microbiology Letters | 2003

Characterization of RAP, a quorum sensing activator of Staphylococcus aureus

Moshe Korem; Abhineet S. Sheoran; Yael Gov; Saul Tzipori; Ilya Borovok; Naomi Balaban

Staphylococcus aureus are Gram-positive bacteria and cause diverse serious diseases in humans and animals through the production of toxins. The production of toxins is regulated by quorum sensing mechanisms, where proteins such as RNAIII activating protein (RAP) are secreted by the bacteria and induce virulence. Antibodies to RAP have been shown to protect mice from infection, but the molecular structure of RAP was not known and hindered vaccine development. To characterize RAP, recombinant protein was made and tested for its ability to induce genes important for pathogenesis (agr). In addition, monoclonal antibodies were produced to identify its cellular localization. Results shown here indicate that RAP is a 277-aa protein that is an ortholog of the ribosomal protein L2. Like the native molecule, recombinant RAP activates the production of RNAIII (encoded by agr). Using RAP specific monoclonal antibodies we demonstrate that RAP is continuously secreted and while RAP is expressed also in other bacteria (like Staphylococcus epidermidis, Staphylococcus xylosus and Escherichia coli), it is secreted to the culture medium only by S. aureus. Our results show that the ribosomal protein L2 has an extraribosomal function and that when secreted RAP acts as an autoinducer of virulence to regulate S. aureus pathogenesis.

Collaboration


Dive into the Ilya Borovok's collaboration.

Top Co-Authors

Avatar

Raphael Lamed

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Edward A. Bayer

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bareket Dassa

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuval Shoham

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge